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Modeling Student Software Testing Processes:  

Attitudes, Behaviors, Interventions, and Their Effects 

 

Kevin John Buffardi 

 

(ABSTRACT) 
Effective software testing identifies potential bugs and helps correct them, producing 

more reliable and maintainable software. As software development processes have 

evolved, incremental testing techniques have grown in popularity, particularly with 

introduction of test-driven development (TDD). However, many programmers struggle to 

adopt TDD’s “test a little, code a little” approach and conventional computer science 

classrooms neglect evaluating software development as a process. In response, we 

explore influences on students’ testing behaviors, effects of incremental testing strategies, 

and describe approaches to help computer science students adopt good testing practices. 

First, to understand students’ perspectives and adoption of testing strategies, we 

investigated their attitudes toward different aspects of TDD. In addition, we observed 

trends in when and how thoroughly students tested their code and how these choices 

impacted the quality of their assignments. However, with insight into why students 

struggle to adopt incremental testing, we identified a need to assess their behaviors during 

the software development process as a departure from traditional product-oriented 

evaluation. 

By building upon an existing automated grading system, we developed an adaptive 

feedback system to provide customized incentives to reinforce incremental testing 

behaviors while students solved programming assignments. We investigated how 

students react to concrete testing goals and hint reward mechanisms and found 

approaches for identifying testing behaviors and influencing short-term behavioral 

change. Moreover, we discovered how students incorporate automated feedback systems 

into their software development strategies. 

Finally, we compared testing strategies students exhibited through analyzing five years 

and thousands of snapshots of students’ code during development. Even when accounting 

for factors such as procrastinating on assignments, we found that testing early and 

consistently maintaining testing throughout development helps produce better quality 

code and tests. By applying our findings of student software development behaviors to 

effective testing strategies and teaching techniques, we developed a framework for 

adaptively scaffolding feedback to empower students to critically reflect over their code 

and adopt incremental testing approaches. 
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Chapter 1 

Introduction 
 

 

 

 

1.1 Research Motivations 
Software development involves problem solving to design, implement, and validate 

complex algorithms and systems. Consequently, formal software engineering methods 

propose various strategies to control for quality during software development. 

Meanwhile, educational accreditation agencies acknowledge the need for students to gain 

proficiency in these methods by requiring computer science departments to prepare 

students with “An ability to use current techniques, skills, and tools necessary for 

computing practice” [ABET2013]. Likewise, a collaborative task force of leaders in 

industry and professional computing organizations—including the Association for 

Computing Machinery (ACM) and Institute of Electrical and Electronics Engineers 

Computer Society (IEEE-CS)—reviews and recommends guidelines for computer 

science curricula. Their report [ACM2013] identifies software engineering as a 

knowledge area with particular need for attention. Specifically, it recognizes a growing 

need to concentrate on professional practices in computing, with particular consideration 

for testing and software engineering techniques. Accordingly, computer science 

education should prepare students with experience following software engineering 

methods and techniques for improving their problem solving skills. 

In addition, teaching and assessing application of software engineering methods and 

techniques is considerably more complicated than explaining the subjects and evaluating 

students’ comprehension. Students should learn how to apply techniques in programming 

assignments to demonstrate procedural knowledge of software engineering. To the 

contrary, traditional evaluation of programming assignments considers only a single 

submission of each student’s work. However, an individual submission does not indicate 

the process a student follows, only the result thereof. Thus, gathering data on how a 

student’s work develops over time provides better insight into the process she followed. 

With newfound understanding of the student’s software development process, one can 

evaluate how closely that process demonstrates adherence to software engineering 

conventions. 

For instance, software testing is a common practice in software engineering where 

programmers write tests for automated verification and validation of the software’s 

functionality. However, different software engineering paradigms can take various 

approaches to software testing. test-driven development (TDD), for example, is a 
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technique whereby writing tests precedes writing production code in deliberately small, 

incremental steps [BECK1999]. When evaluating TDD in computer science courses, an 

individual deliverable of a student’s program is insufficient because it, alone, cannot 

demonstrate an incremental testing process (or lack thereof). While a single submission 

may indicate the result or outcome of a student’s testing and development, multiple 

snapshots are necessary to assess how well he adhered to TDD as a process. 

In addition, adherence to software development methods is not typically measured on an 

absolute scale. That is, students may adopt different aspects or techniques involved in the 

intended method to varying degrees. Consequently, students may demonstrate various 

adaptations of a formal method. For example, one student may strictly adhere to TDD’s 

test-first, incremental process while a second student works in larger increments and 

writes tests after her code while a third student disregards TDD and tests only 

sporadically throughout development. Evaluation of only their finalized work may not 

draw any distinctions between the first two students. However, process-oriented analysis 

of each of the three students’ development can distinguish behaviors with varying 

degrees of adherence to multiple dimensions of TDD. Furthermore, by identifying 

distinct testing behaviors, we can then compare their effects on the outcomes of students’ 

work. As a result, analyzing students’ development processes can provide insight into 

individuals’ adherence to software engineering methods, common variations of those 

conventions, as well as evaluations and comparisons between different techniques. 

In addition to improving assessment of development methods and student outcomes, 

eLearning tools can use process-oriented analysis to help students learn while working on 

assignments. While collecting periodic snapshots of students’ work, eLearning 

technology can utilize automated approaches to collecting and persistently analyzing data 

about students’ code. For example, for each snapshot of work, an eLearning tool could 

use quantitative measurements of the code to measure adherence to a software 

development method. As a result, the tool could give students individualized feedback 

providing insights into evaluation of their work. Moreover, with insight into students’ 

work-in-progress, the tool has the opportunity to use educational interventions to help the 

students learn, improve their work, and follow methods. Opposed to only providing 

feedback on learning objectives after an assignment is complete, continual process-

oriented analysis and feedback can help students while working on each assignment. 

1.2 Research Goals 
This work addresses the primary research question: how can computer science 

education use eLearning tools to assess and influence students’ software testing 

behaviors? To attend to this question, we take a process-oriented approach to 

investigating students’ adherence to test-driven development as a formal software 

development method. Consequently, this work concentrates on three main objectives in 

addressing the primary research question: 

1. Describe student affect (emotions and valence) and opinions with regard to 

their influence on adherence to test-driven development (TDD). 
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2. Design an eLearning intervention for encouraging TDD adherence and 

evaluate its impact on student affect, behaviors, and outcomes. 

3. Characterize software testing strategies demonstrated by students and 

evaluate their consequential outcomes. 

For a comprehensive synopsis of students’ experience learning TDD in higher education, 

we examine their attitudes about and adherence to TDD (chapter 3). Furthermore, this 

work describes an eLearning tool—motivated by pedagogical principles—that assesses 

students’ testing behaviors and provides adaptive feedback to reinforce incremental 

testing. We evaluate the effects of students’ attitudes and behaviors on their TDD 

adherence and the consequential outcomes of their work process. Likewise, we evaluate 

our adaptive eLearning intervention for its influence on students’ attitudes and behaviors 

(chapter 4). Finally, we discuss effective and ineffective testing strategies backed by our 

comprehensive quantitative research and provide insights to designing adaptive 

eLearning tools to support procedural learning (chapters 5 & 6).  

1.3 Organization and Contributions of This Work 
In this section, we describe the remaining chapters. Following a literature review, 

chapters 3, 4, and 5 describe completed research as it addresses three primary objectives: 

(i) describing students’ emotions, attitudes, and outcomes of their adherence to test-

driven development (TDD), (ii) detailing an eLearning intervention and evaluating its 

influence on student behavior, and (iii) characterizing software testing strategies and their 

associated consequences.  

Chapter 2  
In the following chapter, we outline principles of test-driven development and reasons for 

teaching TDD in computer science higher education curricula. We survey 

implementations and findings from studies of TDD use in industry. Likewise, we 

synthesize these conclusions with those from existing research on TDD in education and 

identify remaining issues to research. Additionally, this chapter outlines pedagogy and 

learning science with the purpose of reviewing existing eLearning tools and motivating 

design of an adaptive feedback system.   

Chapter 3  
Chapter 3 describes a study of influences on student adherence of TDD. In particular, the 

study uses quantitative instruments for measuring students’ attitudes toward individual 

principles of TDD as well as establishing a baseline measurement of anxiety while 

students develop programming assignments. In addition, we propose metrics for 

analyzing adherence to incremental testing and provide a preliminary investigation of 

relationships between these metrics and outcomes of software quality. Finally, we discuss 

findings from this study and their implications for designing educational interventions to 

encourage TDD. 
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Chapter 4  
In the next chapter, we describe how pedagogy motivated our design of an adaptive 

feedback system with the aim to reinforce incremental testing behaviors. We describe 

three experiments for investigating the influence on the adaptive feedback system on 

student testing behavior. The first study compares student behaviors and outcomes from 

two semesters: a control semester, where students did not use the automated feedback 

system, and an experimental semester where they did. Next, the second study investigates 

the impact of different reinforcement strategies implemented in multiple treatments of the 

adaptive feedback system. Finally, the third study concentrates on short-term responses 

students exhibit after receiving rewards. In addition to reporting findings from both 

studies, we discuss findings from interviewing students about their software development 

processes and experiences with the eLearning tool.  

Chapter 5  
Chapter 5 describes a comprehensive investigation into identifying testing strategies that 

students exhibit on programming assignments. We outline a study of testing strategies 

identified using process-oriented analysis of a large-scale data set of snapshots of 

programming assignment development. In this chapter, we characterize effective and 

ineffective testing strategies and explain how they represent different adaptations of (and 

varied adherence to) TDD principles. Finally, we describe an approach for scaffolding 

feedback to students by promoting reflection through software testing. 

Chapter 6  
The final chapter of this document summarizes the contributions of the findings in this 

dissertation and identifies avenues for future work. 
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Chapter 2 

Literature Review 
 

 

 

 

 

In this chapter, we provide background and context for our research in two sections. The 

first section (§2.1) provides an overview of test-driven development (TDD). We describe 

TDD’s purpose, procedure, application, and findings from its use in both industry and 

academia. In Section 2.2, we summarize pedagogical principles and explain their 

application in a survey of relevant tools for computer science education (and TDD in 

particular).  

2.1 Test-Driven Development (TDD) 
Kent Beck first introduced test-driven development (TDD) as an integral part of the 

larger eXtreme Programming (XP) software development method [Beck1999]. He 

describes: 

Development is driven by tests. You test first, then code. Until all the tests run, 

you aren’t done. When all the tests run, and you can’t think of any more tests that 

would break, you are done adding functionality. 

This approach entails two inherent practices. Firstly, developers write tests in small parts. 

This practice describes unit testing. Unit testing involves writing each test with a focus on 

the smallest segment of code, or in most cases, testing a method or function. The purpose 

of a unit test is to verify that a specific method works correctly. When a unit test fails, the 

developer should know immediately what is broken in the code. Conversely, when a unit 

test passes, she should be confident that the code works as expected.  

TDD’s second inherent practice entails developing with a test-first approach. That is, 

writing a unit test should precede writing the corresponding method. This test-first 

approach represents a notable shift from previous testing conventions, where testing often 

followed writing code with a test-last approach. However, since developers write unit 

tests using testing frameworks—such as JUnit [JUni2013] for testing Java—unit tests can 

run automatically and provide developers with immediate feedback on whether their code 

works. 
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By using unit testing with a test-first approach, TDD specifies an incremental, “test a 

little, code a little” approach [Beck2003]. Specifically, developers should: (i) identify a 

test case and write it as a unit test, (ii) write the corresponding code, (iii) run all unit tests, 

and then (iv) correct the code if tests fail or clean up the code and repeat from the 

beginning (with new features) if all tests pass. Consequentially, the incremental, test-first 

approach resembles the iterative cycle represented in Figure 2.1: 

Philosophically, following TDD should promote confidence and maintainability of code. 

With immediate feedback after writing solution code, developers should gain confidence 

that their code performs according to their expectations. In addition, unit testing 

advocates that each test is independent and has one specific purpose. Consequentially, 

when refactoring code or implementing new features, one can identify if the changes 

broke existing functionality by executing the unit tests. A failed test should identify 

specifically what broke, which enables the developer to focus on what to fix or revert to 

previous versions of the code until all the tests pass. Accordingly, Beck suggests that 

TDD should assist in refactoring, improve productivity, and consequentially reduce 

defects in code [Beck2003]. 

The potential for developing software with greater confidence and improved quality is 

appealing. As a result, several leading software manufacturers have adopted TDD as a 

key ingredient to the Agile software development methodology [FAB+2003]. However, a 

mix of reports from use of TDD in industry presents both enthusiasm and caution for 

adopting TDD. 

Bhat and Nagappan [BN2006] provide a generally favorable perspective of TDD from 

two case studies from Microsoft. They warned that the overall development time for 

TDD projects took 25-35% longer. However, they also found that projects using TDD 

produced higher quality code, with less than half the defects-per-thousand-lines-of-code 

 

Figure 2.1. An Iteration of test-driven development's Test-First Approach. 
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(defects/KLOC) than comparable projects that did not use TDD. They also acclaimed that 

TDD’s unit tests documented code specifications well. 

Canfora, et al. [CCG+2006] conducted a controlled experiment using software 

professionals to compare TDD to the “test after coding (TAC),” test-last approach. 

Similarly, they found that TDD is more time consuming. Nevertheless, they suggest that 

productivity is not necessarily hurt since TDD improves unit testing. Moreover, they also 

found that the workload involved is more predictable when using TDD since incremental 

testing sets clearer expectations than TAC, which can vary more depending on the 

developer’s will and care. 

Meanwhile, Sanchez, et al. [SWM2007] performed post-hoc longitudinal analysis on five 

years of developing an IBM product while using TDD. They compared the results to 

another product’s development that did not use TDD and concluded that TDD aided the 

quality of the software. Like the previous studies, they found TDD requires more time. 

However, they suggest that TDD produced code with fewer defects. While the cyclomatic 

complexity tends to increase over time as software grows and matures, they suggest that 

TDD may decrease the rate at which it becomes more complex. Consequentially, they 

concluded that the improved quality of the software compensated for the initial 

impressions of less productivity when using TDD. 

Nevertheless, in a comprehensive meta-analysis of 22 reports of 32 unique clinical trials, 

Turhan et al. [TLD2010] hedge possible benefits of TDD with reports of inconsistent 

effects and possible side effects. They evaluated TDD on external quality (regarding 

defects and effort correcting defects), internal quality (regarding simplicity and 

maintainability of designs), productivity, and test quality. For each category, they noted 

mixed results and drew conclusions from trends between studies. 

They found that TDD only benefitted external quality if considering pilot and other less-

rigorous studies. Otherwise, there was no consensus on the effect on external quality. 

While considering internal quality, they found that TDD may benefit some aspects (such 

as the previously mentioned effect on complexity) but detriment others (such as design 

cohesion). Likewise, they found that reports on productivity were inconsistent. Generally, 

TDD decreases productivity initially because of a steep learning curve but it is not clear 

whether the long-term effect is positive, negative, or neutral. To the contrary, Turhan et 

al. found that TDD’s emphasis on incremental testing tends to yield better (or at least no 

worse) quality tests. However, they noted that most of the positive reports came from 

pilot studies and that more rigorous experiments found no significant difference in test 

quality when following TDD.  

Consequentially, they offer a perspective that tempers expectations for TDD’s 

effectiveness. In doing so, they posit that TDD may be appropriate in some contexts but 

not in others. Moreover, they recognize that TDD is not used in a vacuum and that other 

factors—such as pair versus solo programming, design paradigms, or developing for 

specific domains like embedded or distributed systems—may determine TDD’s impact. 

Furthermore, they suggest: 
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[…] TDD is difficult to learn. It involves a steep learning curve that requires skill, 

maturity, and time, particularly when developers are entrenched in the code-then-

test paradigm. Better tool support for test-case generation and early exposure in 

the classroom to a test-then-code mentality may encourage TDD adoption. 

Finally, they also recognize that most research does not strictly enforce TDD. That is, the 

experiments usually involved directing (after sometimes teaching) the developers to use 

TDD, but did not actively enforce its adoption. Consequently, we do not know how 

closely study subjects adhered to the strict definition of TDD.  

Nevertheless, given TDD’s popularity in industry, some computer science programs 

include TDD in their curricula. However, academia faces unique challenges in teaching 

TDD. Primarily, students in computer science courses often work on software projects 

with smaller scope and duration. In addition, for individualized assessment, programming 

assignments often require students to work entirely independent of each other instead of 

as part of larger teams. Potentially increasing students’ workload on programming 

assignments can be problematic because of the short timespan they have to complete an 

assignment – adding undue workload may be burdensome to students’ studies. Finally, 

some reports caution that TDD may be difficult for novices, which would include most 

students. 

Edwards, [Edwa2003] introduced TDD to computer science classes along with an 

automated grading system that included assessment of students’ test quality. At the 

conclusion of multiple semesters of a junior-level programming languages course, he 

surveyed students and found general enthusiasm about using TDD. Students produced 

programs with 28% fewer defects/KLOC. Survey responses showed that generally 

students believed TDD improved their confidence and ability to write tests, but also had a 

moderately poor opinion of TDD’s impact on how long assignments took. 

Melnik and Maurer [MM2005] evaluated TDD, as used in Agile development, over three 

academic years. By surveying both graduate and undergraduate students after 

experiencing TDD in class, students reported positive perspectives of TDD’s impact on 

software quality, speed of testing, and software design. However, only a small majority 

(55%) reported that they used TDD on a team assignment. Consequently, some students’ 

beliefs may reflect what they were taught in lectures regarding TDD rather than 

appraising it from their first-hand experiences. 

Janzen and Saiedian [JS2008] compared test-first to test-after-coding incremental unit 

testing. They found that test-first programmers consistently wrote more concise (fewer 

lines of code) and simpler (cyclomatic complexity) code. They did not find conclusive 

differences in the coupling or cohesion. In addition, they identified an issue of less-

experienced students testing after coding even when instructed to follow a test-first 

approach.  

In another study [JS2007], they also reported that students’ experience as developers and 

amount of exposure to TDD influenced their willingness to adopt TDD. Likewise, 

Barriocanal, et al. [BUM+2002] identified a need to motivate students to write tests when 
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they are first introduced to TDD. Spacco and Pugh [SP2006] specifically suggest that 

students require incentives to adopt a “test-first mentality.” They warned that otherwise, 

students resort to test-after-coding approaches. 

As anticipated, concerns about students’ willingness to adopt TDD are prevalent; 

however, learning TDD has multiple benefits. Foremost, with exposure to TDD, students 

gain experience with professional techniques. Secondly, some reports suggest that 

students’ work will consequently improve with better tests and code with fewer defects. 

Finally, following TDD’s test-first approach may promote improved problem solving. 

Edwards [Edwa2004] suggests that by testing their own code, students may be more 

likely to experiment and reflect over their solutions. Consequently, students may abandon 

weak “trial-and-error” problem solving strategies by thinking analytically and exercising 

“reflection-in-action.” Therefore, in addition to TDD’s practical applications, Edwards 

advocates that it may also have pedagogical advantages by encouraging reflection and 

better problem solving strategies. 

2.2 Applications of Pedagogy in eLearning Contexts 
A loose definition of eLearning tools includes any digital technology used in an 

educational setting. Such a broad definition encompasses a wide variety of tools from 

presentation software and word processors to educational games and intelligent tutoring 

systems. However, by narrowing the scope of the definition to include only tools created 

with the specific purpose of supporting students’ learning, pedagogy deliberately 

motivates use and implementation of eLearning tools. Accordingly, popular pedagogical 

philosophies and empirically vetted teaching techniques provide a foundation for 

designing and evaluating eLearning technology [CM2003]. 

Learning Taxonomies 
Bloom’s Taxonomy [Bloom1969] classified three principle domains of learning: 

cognitive, affective, and psychomotor. The psychomotor domain relates to physical skills, 

which are not particularly relevant to fundamental computer science education. On the 

other hand, the cognitive domain addresses how students construct knowledge while the 

affective domain concentrates on their emotions, attitudes, and motivations. Both the 

cognitive and affective domains can help frame what students comprehend and how they 

learn and adopt new skills in computer science. 

An updated revision of Bloom’s Taxonomy [AKA+2001] classifies the cognitive domain 

as levels from lower- to higher-order thinking skills: remember, understand, apply, 

analyze, evaluate, and create. Remembering involves identifying and retrieving 

information from memory. Understanding includes explaining, interpreting, comparing 

and other methods of constructing meaning. Applying is the use of procedures to 

undertake tasks. Together, remembering, understanding, and applying represent lower-

order thinking skills (LOTS). Meanwhile, analyzing, evaluating, and creating represent 

higher-order thinking skills (HOTS), which demonstrate critical thought. For example, 

analyzing often involves dissecting material into parts and considering their relationships 

and purposes. Evaluating incorporates checking and making judgments on material and 
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finally creation forms new structures from distinct parts through hypothesis, design, and 

construction. Computer science education should combine both LOTS and HOTS by 

enabling students to perform simple tasks like identifying and implementing common 

programming conventions as well as preparing them to demonstrate complex cognition 

such as deconstructing complicated problems and constructing novel solutions. 

Meanwhile, the affective domain of Bloom’s Taxonomy presents a context for framing 

students’ feelings and motivations for learning. It includes five levels of affective 

processes: receiving, responding, valuing, organizing, and characterizing. While 

receiving only reveals a passive attention to learning, responding demonstrates 

participation as a learner. Going further, by valuing, students assign worth to behaviors 

and phenomena. Moreover, students demonstrate organization of those values by 

differentiating them from other values and adapting them. Finally, students exemplify 

characterizing a value by internalizing it so that it directs their independent behavior. The 

affective domain is particularly important in explaining motivations behind students’ 

behaviors. Consequently, assessing student affect helps evaluate their adherence to 

software development methods, such as test-driven development (TDD). The following 

table outlines each level of the cognitive and affective domains with corresponding 

learning objectives for TDD: 

Tomei also proposes a technology domain [Tome2005] to supplement the traditional 

domains in Bloom’s Taxonomy. In particular, he defines a six-tiered technology 

taxonomy: literacy for understanding technology, collaboration for sharing ideas through 

mediated interpersonal interaction, decision-making for leveraging technology to 

problem-solve, infusion for identifying existing technology to apply to learning, 

Table 2.1. Learning Objectives for test-driven development (TDD) as Classified 

by Bloom's Taxonomy 

 

Cognitive Process TDD Learning Objective 
Create Develop personal problem solving strategy using TDD 

Evaluate Appraise TDD's effectiveness in software development 

Analyze Review TDD's outcomes compared to other approaches 

Apply Demonstrate TDD behaviors when developing software 

Understand Generalize TDD's approach as development method  

Remember Recall test-first and incremental approach to TDD 

 

 

 

Affective Process TDD Learning Objective 
Characterize Adopt TDD as a personal problem solving strategy 

Organize Differentiate advantages of TDD vs. of other strategies 

Value Recognize benefits of TDD on software development 

Respond Attempt approaches described in TDD 

Receive Read/listen to instructions on how to follow TDD 

 

 



www.manaraa.com

11 

 

integration for developing new technology to aid learning, and tech-ology for judging 

technology’s social impacts.  

Put broadly, computer science education implicitly addresses each of these levels since 

technology is inseparable from the study of computing. However, to support learning of 

software development methods, learning objectives must particularly emphasize 

decision-making, infusion, and integration. As we introduce systems for providing 

students with feedback, that technology should influence students’ decision-making in 

adopting effective problem-solving techniques. Likewise, we need to infuse existing 

educational and software engineering tools by adapting and integrating them into 

interventions specific to incorporating TDD in software development. Accordingly, while 

Tomei’s Taxonomy helps characterize tangible application of technology as educational 

media, Bloom’s Taxonomy emphasizes the psychological aspects of learning. 

Scaffolding 
In addition to gauging students’ cognition and affect, educational interventions often aim 

to guide students’ knowledge and behaviors to meet specific learning objectives. In 

particular, educational constructivism emphasizes generating new knowledge based on 

existing knowledge. For example, Vygotsky defines the Zone of Proximal Development 

(ZPD) [Vygo1978] as: 

…the distance between the actual development level as determined by 

independent problem solving and the level of potential development as 

determined through problem solving under (instructor) guidance, or in 

collaboration with more capable peers. 

Consequentially, educational interventions may be most effective when they gauge the 

student’s actual development level, predict what the student can achieve with help and 

provide just enough guidance until the student can demonstrate that development level 

without assistance. Scaffolding describes a similar approach where the teacher gradually 

withdraws guidance as the student attains higher goals and greater independence. 

Scaffolding can serve as a general teaching philosophy, but eLearning implementations 

of scaffolding show particular potential [Bran2000]. For example, intelligent tutoring 

systems (ITS) use cognitive models to track student comprehension and adaptively help 

them learn, such as when solving algebra problems using the ITS, Practical Algebra 

Tutor [KS1996]. 

To bridge cognition with technological tools and interventions, Kaptelinin [Kapt1995] 

describes activity theory as an extension of Vygotsky’s work for contextualizing human-

computer interaction. Put broadly, activity theory explains acquisition of new knowledge 

and abilities as the process of mentally internalizing interactions. Meanwhile, 

externalization represents manifesting mental processes through external actions. Since 

external actions are directly observable while internal processes are not, mental processes 

are verified through behavioral observation. Consequently, correcting mental processes 

first requires observation of an incorrect action, followed by mediation that shapes new 

interactions to internalize. Accordingly, Kaptelinin describes computers as tools for 

mediation within the framework of activity theory.  
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Applied eLearning Techniques 
Promoting learning through human-computer interaction is challenging. Moreover, 

mediating behavioral change through cognitive and affective development poses 

particularly unique challenges in eLearning. However, Fogg introduces principles of 

captology, the “design, research, and analysis of interactive computing products created 

for the purpose of changing people’s attitudes or behaviors” [Fogg2003]. In particular, he 

identifies distinctions computers have from humans that give computers unique 

advantages in persuading change. For example, while humans may become fatigued or 

frustrated in persuading others, computers can persistently provide interventions without 

giving up. In addition, computers can take advantage of massive data storage with quick 

calculation to store and access relevant information. Moreover, computers can also scale 

those capabilities well to larger groups of users (e.g. many students) while human 

instructors’ one-on-one guidance does not scale to large groups of learners. 

Fogg also outlines several types of empirically vetted, persuasive techniques that can 

apply—either alone or in conjunction—to shaping complex behaviors. Reduction 

involves simplifying target behaviors to simple, clear steps for the user to follow. 

Tunneling requires a user to relinquish some self-determination and self-regulation by 

using technology that dictates a sequence of steps. Meanwhile, tailoring takes an 

alternate approach by adapting relevant information to match the user’s state (such as 

comprehension level or attitude) to the target behavior. Similarly, suggestion technology 

persuades behavior by providing recommendations for target behavior. However, Fogg 

emphasizes that effective suggestion requires keen use of kairos—identifying an 

opportune time to deliver the message.  

As an example, Fogg illustrates that technology meant to persuade drivers to carpool 

requires the suggestion to precede leaving to commute for immediate behavior change. 

Alternately, in this context, persuasive technology could interject while the driver is stuck 

in traffic while a carpool lane is empty to influence the driver’s attitude and future 

decisions. However, he also points out that studies suggest that people are persuaded 

more often when they can take immediate action on the decision. 

Fogg also describes how self-monitoring technology can influence behavior by 

empowering people to deliberately track their progress toward a goal and develop 

intrinsic motivation. Alternately, incentive systems use surveillance to monitor peoples’ 

behaviors and then offer rewards to reinforce target behaviors. Conditioning technology 

specifically uses positive and/or negative reinforcement—often in the form of sounds and 

images as digital rewards or punishments—to encourage or discourage associated 

behaviors. However, influencing complex behaviors is difficult so designing 

reinforcement needs to address each aspect of the behavior strategically. 

Linehan, et al. [LKL+2011] describe a framework of reinforcement schedules and how 

they relate to prompting different types of behaviors. As alternatives to constant 

reinforcement, ratio or interval schedules can establish intermittent reinforcement. More 

specifically, either schedule can also be fixed or variable. A fixed ratio schedule offers 

reinforcement after the target behavior is demonstrated a fixed number of times while a 

variable ratio schedule changes the number of times a behavior has to be demonstrated 
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between each reinforcement. Both schedules produce high and steady rates of response 

while the latter may be more economical by using fewer instances of reinforcement. On 

the other hand, fixed interval schedules only reinforce a behavior after a given amount of 

time has elapsed, while variable interval oscillates the amount of elapsed time required. 

Variable interval scheduling is particularly difficult to predict and consequently, students 

may be more surprised by unanticipated reinforcement. All four schedules are used 

regularly in educational games. 

In addition to strategies for scheduling reinforcement, research has also identified tactics 

for engaging students by leveraging motivations from games. Gamification is the 

technique of applying basic elements of games—such as point systems, leaderboards and 

badges—to promote engagement outside of gaming contexts [DSN+2011]. For instance, 

Mekler, et al. [MBO+2013] found that establishing a point system motivated increased 

intrinsic motivation to perform simple but otherwise mundane tasks. 

However, Bruckman [Bruck1999] also warns that many attempts to merge education with 

entertainment fail. She uses “chocolate-dipped broccoli” as a metaphor to explain how 

educational games sometimes adopt the less-favorable aspects of education and 

entertainment without effectively delivering their respective appealing aspects. That is, 

without proper game and educational design, “edutainment” may neither be fun nor 

promote learning. Instead, she advises that following some basic principles help establish 

engagement in educational contexts, such as: “Make the learning inherently fun—don’t 

sugar-coat an unpleasant educational core” and “Whenever possible, provide social 

support for learning.” 

Software Testing Tools for eLearning 
There are several tools for supporting test-driven development (TDD), some of which are 

designed specifically for educational purposes. However, there are currently no 

eLearning systems that use persuasive technology, gamification, or other overt, 

pedagogically-driven techniques to assess and encourage TDD as a software development 

process. Instead, we describe the following technologies to identify their assets as well as 

opportunities for advancing TDD eLearning tools. 

JUnit [JUni2013] is a testing framework for the Java programming language and similar 

(xUnit) frameworks exist for other popular languages. In addition, TDD extensions for 

Integrated Development Environments (IDE’s) are common to execute test cases in JUnit 

and automatically generate reports on whether each test passed or failed. While the TDD 

extensions visually identify passes and failures (usually with green and red progress 

bars), they do not require specific testing behaviors and do not deliberately persuade 

students’ testing behaviors. 

Alternatively, Lappalainen, et al.[LII+2010] developed ComTest, a system to allow 

students to write test cases in a simplified format. While they found that ComTest was 

popular among novices and promoted students to write more tests, using ComTest diverts 

students from gaining practical experience using JUnit, which is the de facto standard for 

unit testing in industry. Furthermore, no notable research suggests that JUnit’s syntax is a 

significant obstacle to students adopting TDD. Finally, Lappalainen, et al., also 
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acknowledge that ComTest requires unit testing but does not enforce either test-first nor 

incremental approaches to testing (as required in TDD). 

Meanwhile, automated testing tools, such as Clover [Atla2013], provide more insight into 

tests. Specifically, it calculates test coverage, or the percentage of the code that is 

exercised by executing all of the tests. Consequently, students can use these tools to 

appraise how thoroughly their tests exercise their code. Similarly to JUnit extensions for 

IDE’s, these tools often produce visual indications to help monitor coverage, but neither 

enforce or suggest particular testing methodology. 

On the other hand, Kou, et al. [KJE2010] developed Zorro, a tool for automatically 

inferring whether software development done within the IDE exhibits TDD. It records 

operations in the IDE such as creating a test method, creating solution methods, running 

tests, and refactoring code. Based on the order and pattern of these “micro-processes,” 

Zorro determines if the development behavior matches the operational definition of TDD. 

In preliminary pilot studies, they found that Zorro inferred TDD adherence with up to 

90% accuracy (albeit with very small sample size). Kou, et al. also recognize some issues 

and limitations to the tool’s inferences.  

For example, Zorro’s inference may be inaccurate as a result of misleading behaviors. 

For instance, if a student creates the signature for a test method but leaves the body of the 

method blank (with no actual testing operations) and then completes the corresponding 

code before returning and writing its tests. This behavior does not exhibit a test-first 

approach, but may be inferred as TDD adherence because the test method creation 

preceded that of the solution code. As they continue to develop and evaluate Zorro, it 

shows potential for supporting learning TDD. In particular, by using Zorro as self-

monitoring or surveillance persuasive technology [Fogg2003], it could provide students 

with indications for tracking their adherence to TDD and/or offer positive reinforcement 

to overtly encourage adherence. 

Meanwhile, automated programming assessment tools can provide students with 

informative self-monitoring and track their testing behaviors over time. Both Marmoset 

[Spac2013] and Web-CAT [Edwa2013] allow students to submit their work—both code 

and tests—for automatic evaluation. Both tools provide prompt evaluation of the code’s 

correctness (as determined by its performance against a set of instructor’s tests) and allow 

the student to make revisions and resubmit. Web-CAT particularly emphasizes test 

evaluation as well by providing aforementioned coverage assessment. Consequently, 

students can analyze the results of the automated evaluation to identify ways to improve 

their code and tests. However, the automated assessment tools do not overtly evaluate or 

encourage particular processes of testing. Nevertheless, by leveraging the pedagogical 

approaches outlined in this chapter, we can adapt Web-CAT to analyze students’ 

behaviors (as indicated by their testing across multiple submissions to the system), use 

eLearning techniques to influence students’ cognition and affect, and persuade TDD 

behaviors. 
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Chapter 3 

Student Affect, Attitudes, and Testing Behaviors 
 

 

 

 

 

This chapter depicts two studies we conducted as initial investigations into students’ 

attitudes about and adherence to test-driven development (TDD). Specifically, we 

concentrate on the first objective of the research goals (see section 1.2): “Describe 

student affect (emotions and valence) and opinions with regard to their influence on 

adherence to test-driven development (TDD).” The first study (3.1 Exploring 

Influences) explores measurements of students’ feelings and attitudes and their 

implications for adhering to TDD. It also provides a baseline for assessing student 

anxiety when working on programming assignments. The second study (3.2 Impacts of 

Teaching test-driven development) investigates metrics for observing adherence to TDD 

and studies relationships between those metrics and consequential outcomes. Overall, the 

research in this chapter provides insight into students’ experiences as context for planning 

TDD assessment and teaching interventions. 

3.1 Exploring Influences 
We have published the work described in this section in the article, “Exploring influences 

on student adherence to test-driven development” and presented it at the conference on 

Innovation and Technology in Computer Science Education (ITiCSE) [BE2012ii]. 

3.1.1 Background 
At Virginia Tech, we teach test-driven development (TDD) with Java in our introductory 

programming courses. TDD is introduced early using the JUnit framework [JUni2013] 

and is reinforced throughout the course. Programming project grades include assessment 

on design as well as on the comprehensiveness of student-written tests. However, project 

grades only evaluate individual, completed submissions. They cannot definitively reveal 

whether or not students followed a test-first approach when writing their solutions. 

Grading test code in programming projects may offer insight to students’ abilities to 

produce adequate tests. However, by incorporating TDD into the computer science 

curriculum, we intend to not only expose students to testing, but to also prepare them in 

software development methods applied in industry. Therefore, we are interested in both 

the software they produce and the processes to which they adhere. 

In our CS2 course, Software Design and Data Structures, students submit their code to 

Web-CAT [Edwa2013], an on-line automated grading tool that provides students 
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feedback including static analysis, test coverage, and solution correctness evaluated by 

undisclosed instructor-written reference tests. Students may submit their programming 

projects as many times as they wish without penalty and only their final submission is 

considered for grading.  

By allowing students to submit their work-in-progress, we also gain access to snapshots 

of students’ progress as they develop their software. These series of snapshots provide 

some insight into students’ behaviors and the development methods they follow. 

Consequently, this study addresses student adherence to TDD and investigates reasons 

for their adherence or lack thereof. 

3.1.2 Method 
In order to understand student behavior and affect—including their attitudes and 

emotional valence—with regards to adhering to TDD, we collected data from a semester 

of CS2 assignments via Web-CAT.  We collected both project submissions and 

attitudinal surveys. Participation was voluntary and no compensation was offered. 

Consent was acquired for Web-CAT assignment data analysis and for survey analysis 

separately. 

The survey consisted of 5-point interval scale items. First, students were asked to “Rate 

each item individually on the 5-point scale from 1 (Very Unimportant) to 5 (Very 

Important) on how important the skill is in Computer Science” for: time management, 

problem solving, attention to detail, writing solution code, and writing test code. They 

then repeated ratings for the same skills according to “how strong you are in the skill” 

from “Very Poor” to “Very Good.” 

Next, students rated “the impact of the following behaviors have on developing 

programs” from “Very Harmful” to “Very Helpful,” for the following behaviors: 

beginning work as soon as it is assigned, beginning work near its deadline, developing 

thorough test code, developing code and corresponding tests in small units at a time, 

developing code and corresponding tests in large portions at a time, developing tests 

before writing solution code, and developing tests after writing solution code. 

Correspondingly, they also rated these behaviors according to “how often you practice 

the behavior” from “Very Rarely” to “Very Often.” 

Students then rated their agreement with the following statements from “Strongly 

Disagree” to “Strongly Agree,” “based on your experience with test-driven development 

(TDD) by incrementally developing tests and then solution code one unit at a time:” I 

consistently followed TDD in my programming projects during this course; TDD helped 

me write better test code; TDD helped me write better solution code; TDD helped me 

better design my programs; and In the future, I will choose to follow TDD when 

developing programs outside of this course. 

On the same scale, the students then rated the following items “based on your experience 

with Web-CAT automated results (NOT TA/instructor feedback):” Web-CAT helped me 

improve writing test code; Web-CAT helped me improve writing solution code; Web-CAT 

helped me improve designing my programs; Web-CAT helped me follow test-driven 
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development; Web-CAT helped improve my time management; and Web-CAT helped 

improve my attention to detail. 

To explore relationships between psychological affect and TDD and instructional 

technology interaction, the survey included the Brief Fear of Negative Evaluation Scale 

(BFNES) [RWT+2004] and the Westside Test Anxiety Scale (WTAS) [Dris2007]. Both 

are brief (5-point scale, 8- and 10-item, respectively), validated questionnaires. The 

adaptation of WTAS specifically addressed working on programming projects with the 

following items:  

 The closer I am to a programming project deadline, the harder it is for me to 

concentrate on it 

 When I prepare for programming projects, I worry I will not understand the 

necessary material 

 While working on programming projects, I think that I am doing awful or that I 

may fail 

 I lose focus on programming projects, and I cannot understand material that I 

knew before the project 

 I finally understand solutions to programming projects after the deadline passes 

 I worry so much before a programming project deadline that I am too worn out to 

do my best on the project 

 I feel out of sorts or not really myself when I work on programming projects 

 I find that my mind sometimes wanders when I am working on important 

programming projects 

 After the project deadline, I worry about whether I did well enough 

 I struggle with developing programming projects, or avoid them as long as I can. 

I feel that what I do will not be good enough. 

Statistical analysis concentrated on evaluating the following hypotheses:  

(1) Students will rate importance of skills and their corresponding strengths with a 

positive correlation 

(2) Students will rate helpfulness of and their adherence to behaviors with a positive 

correlation 

(3) Students more likely to adhere to TDD principles will rate TDD’s helpfulness 

more positively 

(4) Students with higher programming anxiety (according to WTAS) will adhere less 

to starting work early and to principles of TDD 

(5) Students with higher programming anxiety will rate Web-CAT as more helpful 

(6) Students with higher evaluation anxiety (according to BFNES) will rate Web-

CAT as less helpful. 

See Appendix A for the full survey. All participants were students in CS2 in the Fall 

2011 semester. 87 students consented (66% of 131 enrolled) to release their project data 
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on Web-CAT for analysis and 61 students (47%) voluntarily completed the survey. Of 

the survey respondents, 84% were computer science majors and others either belonged to 

a different department or had no declared major. Before the course began, 48% of 

respondents had previously used Web-CAT, 61% had previously written test code, and 

52% had previously followed TDD. 

3.1.3 Results 

Ratings on skill strength and importance to computer science were generally positive for 

each skill. The mean and standard deviation for each item is shown in Figure 3.1, below. 

Analysis of paired ratings using Pearson’s product-moment correlation coefficient did not 

reveal any significant relationships except for a small, positive correlation between the 

importance of writing test code and personal strength at it (r
2
=0.26, p=0.02).  

 

 

 
Figure 3.1. Personal Strength and Importance of Skills in Computer Science 
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Hypothesis 1 (positively correlated importance and strengths) cannot be supported given 

the lack of either correlation or statistical significance for time management (r
2
=0.08, 

p=0.54), problem solving (r
2
=0.00, p=1.00), attention to detail (r

2
=0.07, p=0.60), and 

writing source code (r
2
=0.03, p=0.80). On the other hand, positive correlations between 

ratings of helpfulness and adherence support Hypothesis 2 (positively correlated 

helpfulness and adherence). Figure 3.2 shows a summary of the ratings. 

 

 
(1) Very Harmful to (5) Very Helpful 

Help 

(M, sd) 

4.46, 

0.92 

2.02, 

1.16 

3.90, 

0.96 

4.20, 

0.82 

2.75, 

0.99 

2.90, 

0.93 

3.62, 

0.84 

Adhere 

(M, sd) 
2.93, 

1.35 

3.01, 

1.36 

3.30, 

1.08 

2.95, 

1.12 

3.61, 

1.00 

1.87, 

0.96 

4.30, 

0.67 

r
2
, p 0.42, 

<0.01 

0.33, 

=0.01 

0.55, 

<0.01 

0.57, 

<0.01 

0.39, 

<0.01 

0.49, 

<0.01 

0.23, 

=0.07 

 

Figure 3.2. Behavior Adherence and Helpfulness Ratings Graph (above) 

with Correlations (below) 
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All items demonstrate positive correlations that are statistically significant except for test-

last, which has a correlation approaching significance. 

Likewise, Hypothesis 3 (TDD adherence leads to higher helpfulness rating) was 

supported with significant correlations between self-reported adherence to TDD and 

perceived helpfulness of TDD. Often adhering to TDD has a strong, positive correlation 

with agreement to: “TDD helped me write better test code” (r
2
=0.67, p<0.01), “TDD 

helped me write better solution code” (r
2
=0.65, p<0.01), “TDD helped me better design 

my programs” (r
2
=0.60, p<0.01), and “In the future, I will choose to follow TDD when 

developing programs outside of this course” (r
2
=0.57, p<0.01). Figure 2 illustrates the 

ratings and correlations.  

For both the Brief Fear of Negative Evaluation Scale (BFNES) and Westside Test 

Anxiety Scale (WTAS), ratings were averaged to score each participant where higher 

scores represent higher anxiety. On a 5-point scale, WTAS found moderately-low project 

anxiety (M=2.16, sd=0.81) and BFNES found slightly higher evaluation anxiety (M=2.7, 

sd=1.08). Cronbach’s coefficient confirmed that BFNES (a=0.96) and WTAS (a=0.88) 

were internally consistent and the Shapiro-Wilk test found the results were not normally 

distributed for either BFNES (W<0.01) or WTAS (W=0.02). 

Hypothesis 4 (higher anxiety will adhere less) suggested that project anxiety (WTAS) 

would correlate with avoiding TDD, in starting work late, and in not testing thoroughly. 

However, no conclusion can be made because no correlations were found between 

project anxiety and: “Beginning work as soon as it is assigned” (r
2
=-0.08, p=0.54), 

“Developing thorough test code” (r
2
=0.08, p=0.54), “Developing code and corresponding 

tests in small units at a time” (r
2
=-0.02, p=0.87), nor “Developing tests before writing 

solution code” (r
2
=0.03, p=0.82). 

Moderate positive correlations between project anxiety and some ratings of Web-CAT’s 

helpfulness suggest some support for Hypothesis 5 (higher anxiety will rate Web-CAT 

higher) with significance for: “Web-CAT helped me improve writing solution code” 

(r
2
=0.26, p<0.05), “Web-CAT helped me improve designing my programs” (r

2
=0.36, 

p<0.01), and “Web-CAT helped me follow test-driven development” (r
2
=0.45, p<0.01). 

However, correlations with some other items were not significant: “Web-CAT helped me 

improve writing test code” (r
2
=0.17, p=0.19), “Web-CAT helped improve my time 

management” (r
2
=0.15, p=0.27), and “Web-CAT helped improve my attention to detail” 

(r
2
=0.21, p=0.11). 

In addition, programming project submissions to Web-CAT allowed for analysis of 

patterns in student software development. It should be noted, however, that submissions 

to Web-CAT did not equally represent the code in all stages of development. On average, 

the first submission by a student already represented nearly 65% of the number of the 

statements in that student’s final submission. Therefore, the snapshots of work-in-

progress are sometimes limited in what they reveal about early work habits. 

However, when comparing the relationship between the time of first submission and 

eventual final test coverage of statements, there was a significant difference between 
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those who achieved 100% coverage and those who did not. The median time of first 

submission for students who achieved 100% coverage was 3.18 days before the deadline, 

while students who did not achieve 100% coverage had a median time of first submission 

1.22 days before the deadline. According to the Mann-Whitney U test, the time remaining 

before the project deadline had a significant effect on final test coverage achieved (Z=-

4.37, p<0.01).  

We also compared the test coverage of each snapshot in the series of submissions for 

each student’s project. We investigated relationships between the following metrics:  

 Average test coverage — Percent of statements covered by tests at time of each 

submission to Web-CAT, averaged for each student on each project 

 Total coverage rate — Percent of submissions that achieved 100% statement 

coverage at time of submission to Web-CAT, measured for each student on each 

project 

 Final coverage — Percent of statements covered by tests on student’s final 

submission for a project 

 Final correctness — Correctness of solution code on student’s final submission 

for a project, as determined by instructor-written tests 

 Final Test NCLOC — Amount of student-written test code, in terms of the 

number of non-comment, non-blank lines of code 

 Final Solution NCLOC — Amount of student-written solution code, in terms of 

the number of non-comment, non-blank lines of code 

The relationships between these metrics are summarized in Table 3.1, below. We found 

that the average test coverage (M=82%, sd=19.08) had a strong, positive correlation with 

both the project’s final correctness and final coverage. It also had moderately positive 

correlations with final test and solution non-comment lines of code (NCLOC). Similarly, 

the total coverage rate positively correlated with final coverage and final correctness. A 

combination of high average test coverage and consistent total coverage rate would 

suggest incremental, thorough testing on behalf of the student. 
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3.1.4 Discussion 
While Hypothesis 1’s prediction—that students’ perceived importance of skills would be 

positively correlated to their self-assessments—was not supported, the results may be 

interpreted with a positive outlook. Students’ ability to separate their own ability from 

what they consider important skills in computer science may allow them to recognize 

their strengths and identify important skills they may lack. 

Additionally, the strong relationship between what students characterize as helpful 

practices and their adherence illustrates reciprocity between affect and behavior in 

learning. A positive attitude toward good programming practices will encourage a student 

to act accordingly, which should reinforce that attitude with positive outcomes. The 

supportive result for Hypothesis 3 (TDD adherents will rate its helpfulness higher) 

strengthens this reciprocal model of learning, where we observe students who have 

adhered to test-driven development (TDD) characterize the method as helpful. 

Students who adhered to TDD also benefited with significantly better test coverage and 

solution correctness. The observations of high average coverage per submission and 

percentage of submissions with 100% coverage associate with incrementally testing and 

developing a solution in tandem. While one cannot irrefutably conclude that these 

students were following the test-first principle of TDD, the pattern strongly suggests 

behavior consistent with unit testing. The adherents’ improved outcomes also corroborate 

with other studies’ findings that TDD improves quality of code and testing. 

Interestingly, in post-hoc analysis we found that adherence to TDD principles of test-first 

and unit testing also correlated with adherence to the good practice of starting work early. 

Survey data showed modest, positive correlations between starting work early with both 

test-first (r2=0.28, p<0.05) and unit testing (r2=0.33, p<0.01). 

Table 3.1. Correlations Between Test Coverage  

and the Quality and Quantity of the Final Submission 

 

 Mean, sd Avg Test Coverage 

(r
2
, p) 

Total Coverage 

Rate 

(r
2
, p) 

Final Coverage 97.49%, 0.09 0.72, <0.0001 0.28, <0.0001 

Final Correctness 88.06%, 20.60 0.55, <0.0001 0.39, <0.0001 

Final Test NCLOC 235.43, 108.01 0.38, =0.0001 -0.06, 0.3097 

Final Solution 

NCLOC 
355.37, 120.61 0.21, <0.0001 -0.24, <0.0001 
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Despite these encouraging results, our conclusions must also acknowledge two 

concerning findings. Foremost, both survey results and Web-CAT data showed trends in 

procrastinating before starting work. Procrastination should be discouraged and the data 

show negative effects on test coverage. This finding is consistent with other studies that 

found that students who earn A and B grades start work significantly earlier than those 

who earn lower grades [ESP+2009]. There is opportunity for research in dissuading this 

counterproductive behavior, perhaps through pedagogical or instructional technology 

interventions. 

Secondly, survey results showed discouragingly low ratings for both helpfulness and 

adherence to test-first development (Figure 2). In fact, the Wilcoxon signed-rank test 

found that the mean score for helpfulness (M=3.62, SD=0.84) and adherence (M=4.29, 

SD=0.67) to test-last is significantly greater (p<0.01 and p<0.01, respectively) than the 

helpfulness (M=2.90, SD=0.93) and adherence (M=1.87, SD=0.96) to test-first. 

Snapshots of project submissions to Web-CAT may indicate whether students tested 

early or not, but they cannot concretely determine whether a unit test was written before 

or after its corresponding solution code. Consequently, we can only rely on the survey 

data to evaluate student adherence to test-first. 

It is not entirely surprising that the test-first aspect of TDD garners more resistance than 

unit testing. For students with experience programming but not with TDD, the behavior 

of designing tests first is a considerable departure from immediately developing the 

solution. As mentioned previously, studies in both academia and industry found 

programmers who were younger and less experienced were less accepting of TDD. Our 

study suggests that student attitudes towards test-first development may be the primary 

hindrance for new novices accepting and adhering to TDD. Accordingly, therein lies an 

opportunity for computer science educators to explore ways to persuade students to use 

test-first development. We plan to investigate this opportunity in future research. 

Finally, our research investigated possible relationships between psychological anxiety 

and the adherence to TDD and attitudes toward Web-CAT. Both Brief Fear of Negative 

Evaluation Scale (BFNES) and Westside Test Anxiety Scale (WTAS) were internally 

consistent. There was no observable relationship between project anxiety and adherence 

to TDD principles.  

According to the Yerkes-Dodson law [TD1908], stress has a positive effect on 

performance until surpassing threshold where stress becomes too great and produces a 

negative effect on performance. Likewise, stress may motivate students to follow 

recommended methods unless the stress is so great that it encourages bad habits. Further 

investigation into individual differences in response to project anxiety is necessary to 

conclude how stress may influence software development behaviors. Meanwhile, the 

positive correlation found between project anxiety and Web-CAT helpfulness was 

modest, but indicates opportunity for easing disruptive affect with instructional 

technology. 

On the contrary, we hypothesized (6) that instructional technology that includes feedback 

on test failures and other negative results would have an adverse effect on those with fear 
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of evaluation (BFNES). However, the results of evaluation anxiety relating to impression 

on Web-CAT’s helpfulness were inconclusive. It is important though to design feedback 

with sensitivity to possible negative student affect. 

Our research investigated adherence to test-driven development (TDD) with particular 

attention to the role of student affect, or attitudes and emotions. As we observed, attitudes 

toward TDD influenced both negative and positive outcomes in students new to the 

method. Understanding the reciprocal nature of affect in learning appears to be especially 

important when teaching methods. Methods like TDD are taught but not necessarily 

assessed directly. Consequently, it is vital to evaluate whether students are adhering to 

the methods as well as understand their attitudes that will likely inform their behavior. 

This study found significant results that emphasize beneficial outcomes of following 

TDD. However, it also identified challenges to persuade both desired affect and behavior. 

We hope this research will mark grounds for progress in designing instructional 

technology and computer science curriculum to improve TDD education. 

3.2 Impacts of Teaching Test-Driven Development 
We have published the work described in this section in the article, “Impacts of Teaching 

test-driven development to Novice Programmers” in the International Journal of 

Information and Computer Science [BE2012i]. 

3.2.1 Background 
At Virginia Tech, introductory computer science courses began including TDD in 2003.  

These courses introduce TDD early and continue to reinforce it throughout the semester 

by requiring students to write their own software tests for all of their assignment 

solutions. Despite teaching students how to use TDD and encouraging them to apply its 

principles in class, we anecdotally observed some students not adhering to its core 

principles.  These observations draw obvious concern.  

Supporting and following TDD as supplemental material to the usual introductory 

courses requires both instructors and students to assume additional workload. To justify 

the extra burden, it is necessary to investigate the effects of TDD and weigh its merits. In 

this section, we assess the impact of using TDD in an academic setting and demonstrate 

its outcomes. In addition, we identify challenges to improving student adherence to TDD 

principles. 

3.2.2 Method 

Current literature on test-driven development (TDD) education is often limited to 

anecdotal observations and findings from a single semester. Likewise, assessment of 

students’ programming assignments has focused on evaluating their completed code. 

However, since TDD is a process and not just an outcome, only considering the 

completed code turned in by a student does not provide adequate insight into the process 

the student followed to get there. 
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We used Web-CAT as an automated grader for programming assignments. Web-CAT 

provides rapid feedback to students with assessments of the quality of their solutions, 

tests, and style. In addition, students are allowed to submit their code to Web-CAT as 

many times as they like, without penalty—an average of 15 times for each assignment in 

our study. With each submission, students may review the provided feedback and try to 

improve their scores. Since each submission is assessed and archived, we gain the unique 

insight of multiple works-in-progress as students complete their assignments. By 

considering each submission as a momentary snapshot of the students’ development, their 

history of submissions allows a deeper picture of their activities while developing their 

solution, and we gain a richer understanding of the processes they follow. 

In addition, we have compiled submissions from five years of introductory computer 

science classes, each including multiple assignments. Every assignment required students 

to submit test code along with their solution code for assessing test thoroughness. With 

data from 59678 submissions to Web-CAT, the scale of our analysis is significantly 

larger than earlier investigations of student testing behaviors.  

Over five years (ten academic semesters) of introductory Java courses, we taught TDD 

and collected students’ work on programming assignments. All assignments required unit 

testing, written in JUnit [JUni2013]. As mentioned previously, students submitted their 

work to Web-CAT for automated feedback and grading. Some assignments included 

additional, manual evaluation from instructors or teaching assistants. However, only 

Web-CAT’s automated assessment was included to control for individual differences in 

instructor grading. Scores were normalized (0 to 100) for maximum possible score from 

automatic grading alone. 

Web-CAT evaluates students’ solutions based on results of instructor-written reference 

tests. Web-CAT obscures instructor reference tests from the students. Instead, students 

receive feedback based on the results from the reference tests. Solution correctness was 

calculated based on the percent of instructor’s reference tests passed. Web-CAT also uses 

Clover [Atla2013] to evaluate the thoroughness of students’ unit tests. Test validity is 

determined by unit tests passing or failing the solution. Test completeness is assessed by 

code coverage: the percent of solution statements run by the unit tests passed. We 

concentrated on correctness and coverage to measure student outcomes in our analysis. 

Figure 3.3 illustrates the evaluation of a student’s submission for correctness and 

coverage. 
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For the purpose of our discussion, a submission refers to an individual snapshot of a 

student’s work sent by the student to Web-CAT for assessment. For each assignment, 

each student averaged approximately 15 submissions. Although each submission is 

assessed, only their final submissions were considered when assigning grades. 

Accordingly, when describing students’ outcomes, we refer to the correctness and 

coverage of this final submission, unless noted otherwise. To discern students’ adherence 

to TDD principles, we concentrated on the following metrics: 

 Test Statements per Solution Statement (TSSS): the number of programming 

statements in student-written test classes relative to the number of statements in 

their solution classes. 

 Test Methods per Solution Method (TMSM): the number of student-written test 

methods relative to the number of methods in their solution. 

Both TSSS and TMSM measure the amount of test code relative to the amount of 

solution code. Measuring the absolute amount of code (say, in terms of non-commented 

source lines of code) would make it difficult to control for the differing size and 

complexity of various assignments, and also differences between the early or late stages 

of development of a given student’s solution. For instance, in early submissions, having 

few test statements is not necessarily a concern if the solution also is relatively small.  

Accordingly, TSSS and TMSM normalize values according to the relative amount of 

code written by the student so far. 

 
 

Figure 3.3. Evaluation of Outcome Metrics Based on Student Code and 

Obscured Reference Tests 
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TSSS provides an overall indication of how much work a student has devoted to testing 

the solution, compared to writing the solution. A low TSSS value (approaching 0) 

indicates that a student is not dedicating much effort to testing. However, since JUnit test 

cases typically are less complex than the solution algorithms they test, a TSSS below 1 is 

expected in most cases. 

TDD also emphasizes testing in small units. When incrementally testing and developing 

units, a JUnit test method corresponds with a solution method that it validates. 

Accordingly, TMSM provides insight into how well students develop unit tests along 

with their solution methods. 

To observe progress of students’ development processes, we recorded these metrics for 

both the initial and final submissions on each assignment for every student. However, 

TDD is an incremental process so we also calculated average TSSS and TMSM across all 

submissions for each student on each assignment. In doing so, we can distinguish 

students who consistently make progress on developing unit tests from those who may 

neglect testing for periods only to catch up later. 

3.2.3 Results 
We used the Kolmogorov-Smirnov-Lilliefors test [CF2009] to determine whether each 

code analysis metric belonged to a statistical normal distribution. Table 3.2 summarizes 

the results, where low p-values support rejecting the null hypothesis that the values are 

normally distributed. 

 

 

Initial, final, and average measurements for several metrics were tested independently. As 

the table shows, each metric’s p-value is less than 0.01, which indicates all distributions 

are non-parametric. Spearman’s rho (ρ) [CF2009] determines correlation relationships 

Table 3.2. Mean, Standard Deviation, and KSL P-Values for Correctness, 

Coverage, TSSS, and TMSM 

 
Metric Mean S.D. p 

Initial    
TSSS 0.68 0.78 < 0.01 

TMSM 0.92 0.62 < 0.01 
Coverage 0.61 0.37 < 0.01 

Average    
TSSS 0.81 0.67 < 0.01 

TMSM 1.09 0.58 < 0.01 
Coverage 0.77 0.24 < 0.01 

Final    
TSSS 0.88 0.49 < 0.01 

TMSM 1.20 0.68 < 0.01 
Coverage 0.87 0.21 < 0.01 

Correctness 0.79 0.30 < 0.01 
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between non-parametric distributions. Likewise, we used Wilcoxon's 2-sample test (p) 

[CF2009] to compare means since distributions are non-parametric. 

To investigate the relationship between testing early in development and final outcomes, 

we first tested correlations between Test Statements per Solution Statement (TSSS) on a 

student’s very first submission (M=0.68, sd=0.78), as well as correctness (M=0.79, 

sd=0.30) and coverage (M=0.87, sd=0.21) achieved on that student’s final submission for 

the same assignment. Results show a nominally positive correlation with both correctness 

(ρ = 0.0929, p < 0.0001) and coverage (ρ = 0.1529, p < 0.0001). The Test Methods per 

Solution Method (TMSM) of a student’s initial submission (M=0.92, sd=0.62) is also 

positively correlated with correctness (ρ = 0.2189, p < 0.0001) and coverage (ρ = 0.1931, 

p < 0.0001) on the corresponding final submission. In addition, both average (M=0.81, 

sd=0.67) and final (M=0.88, sd=0.49) TSSS and TMSM (M=1.08, sd=0.58; M=1.20, 

sd=0.68) values demonstrate increasing strength of correlation with correctness and 

coverage. All correlations are statistically significant, as shown by low p-values. These 

correlations are summarized in Table 3.3. 

While all the results are statistically significant (p < 0.0001), we considered the 

possibility that the correlations could be explained by unattributed phenomena. For 

instance, particularly diligent students may be more likely to follow directions from the 

instructor. Consequently, they may have produced high quality code regardless of 

whether they adhered to TDD. However, since they follow directions more closely than 

less diligent students, a positive correlation for TDD and code quality would emerge. 

 

 

Likewise, negligent students may write poor code regardless of their adherence to TDD. 

Since they may not follow directions as closely, they could be less likely to adhere to 

TDD and would therefore reinforce the positive correlation. Both plausible student 

stereotypes would strengthen correlation but would not suggest that TDD positively 

affects code quality. 

Table 3.3. Summary of Correlations Between TSSS, TMSM, and  

Correctness and Coverage Outcomes 

 
   Correctness 

(M=0.79, sd=0.30) 
Coverage  
(M=0.87, sd=0.21) 

Metric Mean S.D. ρ p ρ p 

Initial       
TSSS 0.67 0.78 0.0925 < .0001 0.1529 < .0001 

TMSM 0.92 0.62 0.2189 < .0001 0.1931 < .0001 
Average       

TSSS 0.81 0.67 0.1515 < .0001 0.2762 < .0001 
TMSM 1.08 0.58 0.2886 < .0001 0.2690 < .0001 

Final       
TSSS 0.88 0.49 0.2800 < .0001 0.4086 < .0001 

TMSM 1.20 0.68 0.3156 < .0001 0.3049 < .0001 
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To investigate the possibility of such confounding variables, we categorized students 

based on performance.  Each group was determined based on students’ correctness across 

all of their assignments. Students who achieved at least 80% correctness (which usually 

corresponds with A and B grades in American schools) on every programming project 

were designated as “high achieving.” On the other hand, students who consistently 

achieved less than 80% correctness (usually designated as C, D, and F grades) on every 

assignment were assigned to the “low achieving” group. Lastly, students with at least one 

assignment under 80% correctness and at least one assignment above 80% were “mixed 

achieving.” Approximately 14% of students qualified as low achieving, while 54% were 

mixed achieving and 32% were high achieving. 

We controlled for potential effects of particularly motivated and unmotivated students by 

concentrating on the mixed achieving group. This group accounts for the majority of 

students and each student in the group demonstrated that they have the ability and 

motivation to write at least one quality programming project, but have also faltered on at 

least one other programming project as well. Consequently, this group provides an 

opportunity for investigating the difference in behaviors exhibited by a student when she 

succeeds in comparison to those exhibited when she fails another assignment. Moreover, 

a statistically significant relationship between TDD adherence and project correctness 

would provide compelling evidence of TDD’s effects. 

To examine within-subject relationships in the mixed achieving group, we performed a 

Mann–Whitney–Wilcoxon test for repeated measures [CF2009] comparing the average 

TSSS, TMSM, and coverage between assignments with high- (≥80%) and low- (<80%) 

scoring correctness. Average TSSS on high-scoring assignments (M=0.87, sd=0.71) was 

significantly greater (p < 0.0001) than that of low-scoring assignments (M=0.67, 

sd=0.66). Average TMSM was also significantly greater (p < 0.0001) on high-scoring 

assignments (M=1.18, sd=0.62) than low-scoring assignments (M=0.93, sd=0.50). 

Likewise, average coverage was significantly greater (p < 0.0001) for high-scoring 

assignments (M=0.83, sd=0.17) than for low-scoring assignments (M=0.63, sd=0.29). 

For due diligence, we examined the trends of these same metrics across all groups. A 

post-hoc Tukey test [CF2009] identified differences in average TSSS, TMSM, and 

coverage between each group. The high achieving group had statistically greater (p < 

0.0001) average TSSS (M=0.89, sd=0.64) than the mixed achieving (M=0.79, sd=0.69) 

and low achieving (M=0.61, sd=0.46) groups. The mixed group was also significantly 

greater (p < 0.0001) than the low group. Likewise, the high group’s average TMSM 

(M=1.16, sd=0.59) was significantly greater (p < 0.001) than the mixed group (M=1.08, 

sd=0.58) and (p < 0.0001) the low group (M=0.79, sd=0.39). The mixed group was also 

significantly greater (p < 0.0001) than the low group. Average coverage was also 

significantly greater (p < 0.0001) for high (M=0.83, sd=0.18) than mixed (M=0.75, 

sd=0.25) and low (M=0.59, sd=0.29) groups. Correspondingly, the mixed group’s 

average coverage was significantly greater than that of the low group with a p-value 

below 0.0001. 

Spearman rank tests [CF2009] also indicated correlations between average TSSS, 

TMSM, coverage and the final correctness and coverage within each of the three groups. 
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Table 3.4 comprehensively presents the correlations for each metric, separated by group. 

Again, all correlations are statistically significant with p-values less than 0.001. Positive 

correlations with correctness and coverage persist in all three groups, with only one 

exception: average TSSS for high achievers demonstrates a trivially small negative 

correlation with correctness. Since high achievers already average over 96% correctness, 

it is difficult to improve much on that score. In addition, high performing students who 

are just short of achieving 100% correctness may add extraneous test assertions to 

identify their last remaining defects, which may explain the slightly negative correlation. 

Otherwise, all three groups demonstrated small- to moderately-positive correlations 

between each TDD-indicating metric and the final correctness and coverage. Overall, 

average coverage had the strongest positive correlations with both correctness and 

coverage. 

Anecdotal observations by course instructors suggest that some students completely 

ignore TDD and only test en masse at the end of their work, after completing a working 

solution. They may do so only to satisfy the assignment requirements where part of the 

grade is dependent on Web-CAT’s automated testing assessment. To investigate the 

consequences of this test-last strategy, we identified all situations where the student’s 

initial submission contained no test code at all. We compared the correctness and 

coverage outcomes of these late-testers to the rest of the students who demonstrated at 

least some early testing. Early-testers (M=0.81, sd=0.29) achieved significantly better 

correctness in their final submissions (p < 0.0001) than late-testers (M=0.70, sd=0.38). 

Likewise, the early-testers (M=0.88, sd=0.18) achieved significantly better coverage (p < 

0.05) than late-testers (M=0.78, sd=0.33). 
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Lastly, we wanted to identify what early behaviors students demonstrate when they 

eventually achieve complete (100%) coverage. We compared the initial coverage, TSSS, 

and TMSM of students who achieved complete coverage to those with incomplete (< 

100%) coverage. Complete testers started with higher (p < 0.0001) initial coverage 

(M=0.68, sd=0.39) than incomplete testers (M=0.61, sd=0.35). Complete testers also 

began with a greater (p < 0.0001) initial TMSM (M=1.05, sd=0.73) than those with 

incomplete final coverage (M=0.89, sd=0.57). While complete initial TSSS (M=0.74, 

sd=0.82) was greater than that of the incomplete group (M=0.68, sd=0.71), the difference 

was not statistically significant (p=0.1761). 

3.2.4 Discussion 
The measures for Test Statements per Solution Statements (TSSS), Test Methods per 

Solution Methods (TMSM), and coverage on a student’s initial submission all correlated 

with positive outcomes in terms of final correctness and coverage of the completed 

solution. This suggests that early testing yields both higher quality tests and solutions. It 

is also encouraging to find that 87% of first submissions for an assignment include at 

least some test code. We also see that those who do not test early are less likely to 

Table 3.4. Correlations Grouped by High-, Mixed-, and Low-Achieving Students 

 
   Correctness  

(M=0.79, sd=0.30) 
Coverage  
(M=0.87, sd=0.21) 

Metric Mean S.D. ρ p ρ p 

Average TSSS       
High 

Achieving 
0.89 0.64 -0.1002 < 0.001 0.1457 < 0.0001 

Mixed 
Achieving 

0.79 0.69 0.1670 < 0.0001 0.2863 < 0.0001 

Low 
Achieving 

0.61 0.46 0.2930 < 0.0001 0.5015 < 0.0001 

Average 
TMSM 

      

High 
Achieving 

1.16 0.59 0.2110 < 0.0001 0.1361 < 0.0001 

Mixed 
Achieving 

1.08 0.58 0.2680 < 0.0001 0.2796 < 0.0001 

Low 
Achieving 

0.79 0.39 0.2135 < 0.0001 0.3712 < 0.0001 

Average 
Coverage 

      

High 
Achieving 

0.83 0.18 0.2116 < 0.0001 0.4741A < 0.0001 

Mixed 
Achieving 

0.75 0.25 0.4624 < 0.0001 0.6623A < 0.0001 

Low 
Achieving 

0.59 0.29 0.4243 < 0.0001 0.8305A < 0.0001 

 

A - Final Coverage data are subsets of Average Coverage calculations, so strong 

positive correlations are expected 
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achieve complete coverage by their final submissions, even if they employ extensive 

testing later in their development. Together, these findings support the claim that test-

driven development (TDD) promotes code that is easier to debug and maintain. 

TDD also emphasizes testing in small units. We believe that TMSM provides an estimate 

of how well students comply with unit testing principles by developing corresponding 

test and solution methods. Meanwhile, TSSS more broadly describes the work put into 

testing compared to that put into developing a solution. TMSM often had stronger 

positive correlations with correctness and coverage than TSSS, which suggests that unit 

testing is particularly beneficial. 

However, findings also suggest that success does not only depend on unit testing early, 

but also on following TDD consistently and incrementally. Higher average TMSM over 

all submissions for an assignment reflects this behavior. Average TMSM shows an even 

stronger positive correlation with correctness and coverage than TMSM on only the 

initial submission. It is also a strong endorsement of consistently following TDD since 

these correlations hold true for all types of students, regardless of their final correctness. 

That is to say, even if a poorly performing student does not demonstrate the knowledge or 

effort required to produce a high-quality program, he will still likely improve his solution 

and testing by following TDD. 

While submissions to Web-CAT cannot conclusively indicate whether a student has 

written software tests first or written solution code first, survey responses confirmed an 

overall concern with motivating students to adapt a test-first mentality. Overall, students 

do not consistently practice the principle of testing first. However, as a consolation, they 

do generally appear to start testing early, even if they “code a little, test a little” [26] 

instead of “test a little, code a little.”  

Our study of test-driven development (TDD) featured a previously-unmatched volume of 

empirical data, spanning ten academic semesters of programming projects. With such 

extensive insight into student coding practices, we contribute unique findings to the 

practice and teaching of TDD. Our study presents: novel metrics for assessing adherence 

to TDD, strong evidence for positive outcomes from following TDD, and direction for 

improving TDD education. 

We developed new metrics for analyzing code that richly describe TDD. Although 

measuring tests’ coverage was not new, it provides a depiction of the quality or 

completeness of tests. To complement measurements of test completeness, we focused on 

adherence to the TDD philosophy of unit testing incrementally. Average Test Methods 

per Solution Methods (TMSM) in particular helps indicate how consistently a 

programmer develops unit tests paired with their solution methods. 

Previously, evaluating student code was typically restricted to reviewing only the final 

product of their work. Instead, our analysis leveraged Web-CAT to capture multiple 

snapshots of students’ code while they developed their programs. As a result, we 

acquired a uniquely rich depiction of the behaviors and processes students follow. With 
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enhanced detail of their processes, project-specific averages of TMSM and coverage 

revealed how well students demonstrated consistent adherence to TDD over time. 

Using these novel metrics on our exceptionally large data set, we add strong evidence 

that TDD advocates improvements in code and testing quality. We support this validation 

of TDD with consistent, positive correlations and statistically significant differences in 

resulting outcomes. Now with improved confidence in the positive impact of following 

TDD, we can continue advocating and refining TDD education. 
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Chapter 4 

Interventions for Reinforcing Testing Methods 
 

 

 

 

 

 

Chapter 4 concentrates on the second main objective of our research: “Design an 

eLearning intervention for encouraging TDD adherence and evaluate its impact on 

student affect, behaviors, and outcomes.” Accordingly, in the first section (4.1 

Adaptive Feedback), we describe the design for an automated, adaptive feedback system 

for encouraging TDD. We also provide initial evaluation with an experiment comparing 

students’ attitudes, behaviors, and outcomes from one semester using the adaptive 

feedback system to another semester without it.  

The second section (4.2 A Formative Study of Influences on Testing Behaviors) 

concentrates on data collected from interviews with students. In this study, we gathered 

feedback from students on their general software development strategies as well as their 

interaction with eLearning technology during development. We also discuss an 

experiment using variations of the adaptive feedback system with different schedules for 

reinforcement. Finally, the third section (4.3 Responses to Adaptive Feedback) describes 

short-term responses to rewards and punishments on consecutive submissions. 

4.1 Adaptive Feedback 
We have published the work described in this section in the article, “Impacts of Adaptive 

Feedback on Teaching test-driven development” and presented it at the symposium for 

Computer Science Education (SIGCSE) [BE2013ii]. 

4.1.1 Background 
At our university, we teach test-driven development (TDD) in introductory CS1 and CS2 

courses. However, to weigh the possible benefits and shortcomings of TDD in an 

academic setting, we focused on investigating how well students follow TDD and 

assessing how it affected their code quality. 

In several instances, we observed anecdotal evidence of students resisting TDD. For 

example, while working on a programming project, one student explained, “I will worry 

about my testing […] later; I just want to get it working first.” Another student worried 

about failing software tests and lamented, “[The program] is my baby and I don’t want to 

be told that my baby is bad!” Both cases demonstrate attitudes that discourage TDD 

adoption.  
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Other studies have also identified challenges to motivating TDD adherence. Researchers 

identified students’ reluctance to accept TDD especially from less experienced 

programmers [JS2007][MM2005][SP2006]. Our preliminary investigation confirmed 

claims that following TDD contributes to code and test quality. We also supplemented 

our anecdotal observations with evidence of some students’ reluctance to follow TDD. 

Students’ project code identified some behaviors that violate TDD principles. 

Furthermore, our survey linked poor attitudes toward some aspects of TDD as a reason 

for non-adherence [BE2012ii]. 

Consequentially, while we recognize educational value in continuing to teach TDD, we 

also acknowledge a need to improve TDD adherence. We sought pedagogical 

interventions to foster better attitudes toward TDD and encourage its use. As a result, we 

developed an adaptive feedback system to track students’ programming behaviors and to 

reinforce TDD. This paper describes the system’s design and a preliminary evaluation of 

its effects. 

4.1.2 Method 

An Adaptive Feedback System 
We designed and evaluated a pedagogical intervention for improving student adherence 

to test-driven development (TDD). The intervention intends to monitor students’ 

development habits and persuade them to follow TDD’s incremental process.  We 

implemented this intervention by developing a plugin for Web-CAT that provides 

adaptive feedback based on how well the student is adhering to incremental unit testing. 

Since Web-CAT allows students to resubmit multiple times to improve their scores, the 

plugin monitors how a student’s code changes from one submission to the next. The 

plugin particularly takes note of changes in: the amount of solution code, the amount of 

test code, the correctness of the solution (as determined by the instructor’s reference 

tests), and the test coverage achieved (as determined by the student’s tests run against her 

own code). 

As mentioned previously, Web-CAT displays hints to the student when a submitted 

solution fails any instructor reference tests to help guide the student in the right direction. 

These hints have obvious value to the students because they provide some guidance on 

where to look for problems in their programs. By default, Web-CAT shows three hints to 

the student (the exact number can be configured by the instructor) and obscures the rest 

until one or more of the displayed hints are resolved. However, since hints help students, 

we decided to use the hints as incentives to follow TDD. 

The plugin monitors progress on correctness and coverage as indicators of whether a 

student is testing incrementally while developing a solution. When students satisfy a 

threshold in making progress on testing, they earn a credit for a hint. With the plugin, 

students no longer receive three “free” hints automatically. Instead, with each credit they 

earn, they receive a hint. If a problem that triggers a hint is resolved, the credit remains 

and a new (previously obscured) hint displays instead. As students continue to make 

progress on their solution and testing, they can accumulate multiple hint credits. Figure 

4.1 shows an example of adaptive feedback where the student has earned two hints by 
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following TDD practices. See Appendix B for a complete guide for the adaptive 

feedback. 

 

 
 

However, if a student’s submission pattern does not indicate sufficient adherence to 

TDD, he will not earn any hint credits. Instead of displaying hints, the plugin displays an 

image and message that encourages the student to improve their testing in order to earn 

hints. 

In addition to earning and showing hints, the plugin also displays affirming messages to 

acknowledge good habits, even when they are insufficient to warrant earning another 

hint. For example, if the plugin detects that the student has increased the amount of test 

code but has not improved coverage, the message praises the work done and suggests 

continuing to improve test coverage. All adaptive messages and accompanying images 

purposely use only positive reinforcement to encourage and gently persuade students to 

follow TDD.  The choice of wording was influenced by the need to promote and maintain 

a more positive mood regarding the feedback received. 

We also engineered the adaptive feedback system to account for students who may try to 

manipulate or cheat in hopes to gain more (unearned) hints. First, students may only earn 

hints by making improvements to their solution and testing. While the feedback messages 

acknowledge added solution and test code, simply adding lines of code without 

improving test coverage or solution correctness does not earn hint credit.  

Second, a student might remove code in between submissions with the hope of earning 

more hints on the following submission by adding the code back and “faking” an 

impression of improving coverage and/or correctness. However, the plugin compares the 

latest submission to whichever previous submission had the highest coverage and 

correctness, rather than simply comparing to the preceding submission. Therefore, 

attempts to manipulate indicators of progress in this way will not earn hints. 

Evaluation Method 
To evaluate the impact of this adaptive feedback intervention, we collected data from 

student submissions to Web-CAT for two semesters of our CS2 course, Software Design 

and Data Structures. The programming projects for the first semester did not use our 

intervention, so Web-CAT feedback always showed (up to a maximum of) three hints to 

 
Figure 4.1. The Web-CAT Plugin Displays Adaptive Feedback with Hints Earned 
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each student, whenever hints were available. The second semester used the adaptive 

feedback system to provide encouragement for following TDD, but required students to 

earn hints as incentives for doing so. Both semesters used the same four project 

assignments. 

Students signed consent forms to allow their submission data to be included in the 

analysis at the conclusion of each semester. Participation was voluntary and participants 

did not receive any form of compensation. 87 of 130 (66%) students enrolled in the first 

(control) semester and 78 of 129 (60%) students enrolled in the second (experimental) 

semester opted to participate. Code analysis excluded faulty Web-CAT submissions 

(typically, submissions that were cancelled before they were processed, or where a 

student accidentally submitted the wrong files). Students who did not submit at least once 

for each of the four programming projects were omitted from analysis. Students averaged 

roughly 22 submissions per project. 

If the pedagogical intervention succeeds in persuading students to adhere to TDD, we 

may observe multiple effects. Primarily, increased average TMSM and increased average 

coverage both indicate closer adherence to unit testing. Since we previously found 

positive correlations for both metrics with final correctness and coverage, we may also 

observe improved outcomes because of TDD adherence. Persuading TDD adherence may 

produce longer-term results as well. As students follow TDD, we may see increasing 

average TMSM and increasing average coverage over the span of the semester for the 

experimental group as they adopt TDD habits and mature in their practice. Statistical 

analysis of the data will evaluate the following hypotheses: 

H1) The experimental group will have significantly greater average TMSM and 

average coverage than the control group. 

H2) The experimental group will have significantly greater project correctness 

and coverage scores than the control group. 

H3) The experimental group’s average TMSM and average coverage will increase 

over time relative to the control group’s average TMSM and average 

coverage trends. 

Survey 
We also collected surveys at the conclusion of each semester to investigate student 

attitudes and perceptions of TDD. With the survey, we gathered information about 

attitudes and perceptions of TDD, self-reported adherence to TDD principles, and 

anxieties. The survey also asked students to indicate how frequently they practiced 

different development behaviors. Since we are concerned about how negative feedback 

may affect student attitudes and behaviors, we also used two questionnaires to measure 

anxiety: the Brief Fear of Negative Evaluation Scale (BFNES) [RWT+2004] and the 

Westside Test Anxiety Scale (WTAS) [Dris2007]. Both are brief, validated 

questionnaires. The survey instruments are described in detail in section 3.1.2 and the 

complete survey is shown in Appendix A. 
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Students completed the survey at the end of each semester. Participation was voluntary 

and participants did not receive compensation. 61 students from the control and 54 

students from the experimental group completed the survey. Using the results from the 

surveys, we evaluate the following hypotheses: 

H4) Students’ perceptions of the helpfulness of test-first and unit testing will have 

a positive correlation with their self-reported adherence to the same 

behaviors. 

H5) The experimental group will value the helpfulness of test-first and unit testing 

behaviors significantly higher than the control group. 

H6) The experimental group will score significantly lower on WTAS (project 

anxiety) scale relative to their BFNES (fear of negative evaluation) scale 

when compared to the control group. 

H7) The experimental group will respond more positively to following TDD in 

the future than the control group. 

4.1.3 Results 
Before testing hypotheses H1-H3 (experimental group producing better correctness, 

coverage, and TMSM) on code analysis, we used the Shapiro-Wilk test to check for 

normal distributions. None of the following code metrics fit normal distributions, where 

low p-values reject the null hypothesis that the data is normally distributed: correctness 

(M=0.84, sd=0.27, p<0.0001), coverage (M=0.93, sd=0.17, p<0.0001), average TMSM 

(M=0.68, sd=0.27, p<0.0001), and average coverage (M=0.79, sd=0.20, p<0.0001). 

Consequentially, we used the Mann-Whitney-Wilcoxon test to check for significant 

differences between independent, non-parametric samples. 

H1 hypothesizes that the experimental group will have greater average coverage and 

average TMSM than the control group. However, the experimental group did not have 

significantly different (p=0.80) average coverage (M=0.79, sd=0.20) than the control 

(M=0.79, sd=0.19). Likewise, there was no significant difference (p=0.81) between the 

average TMSM for the experimental group (M=0.69, sd=0.28) and the control (M=0.68, 

sd=0.26). Results do not provide any support for H1. 

H2 hypothesizes that the experimental group’s correctness will be greater than that of the 

control. However, no significant difference (p=0.41) was found between the experimental 

(M=0.83, sd=0.27) and the control (M=0.84, sd=0.26) groups. Furthermore, the coverage 

for the control (M=0.94, sd=0.17) was significantly greater (p<0.001) than the 

experimental group (M=0.92, sd=0.17), contradicting H2. 

The third hypothesis (experimental group will have greater TMSM and average coverage 

rate of increase) compares the trends of average TMSM and average coverage over the 

entire semester. First, we calculated the difference in average TMSM and average 

coverage between the first and last projects for each subject. The Mann-Whitney-

Wilcoxon test showed no significant differences (p=0.73) in the change in average 
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TMSM between the control (M=-0.12, sd=0.48) and experimental group (M=-0.11, 

sd=0.48).  

The average TMSM decreased over the course of the semester for both groups, but this 

decrease may be attributed to assignment difficulty. The first project only involved 

developing a business logic model, while latter projects additionally required developing 

user interfaces and event handling, which are typically less straight-forward to test. Both 

groups showed a similar decrease in average TMSM from the first project to the last. No 

significant difference between the two groups indicates that there is insufficient evidence 

to support H3 that the experimental group would mature over the semester to increase 

TMSM when compared to the control. 

On the other hand, the experimental group’s change in average coverage (M=0.10, 

sd=0.19) is greater than that of the control group (M=0.05, sd=0.20) and is approaching 

significance (p=0.10). Since this result suggests there might be an effect between groups, 

we performed a multivariate analysis of variance testing effects for PROJECT 

(representing the repeated measure for four projects) and PROJECT*TREATMENT 

interaction. We found an effect for PROJECT (p<0.0001), but no significant interaction 

for PROJECT*TREATMENT (p=0.22), so there was no observed treatment effect. Table 

4.1 shows the average coverage for each project. 

 

The final four hypotheses address attitudes observed from survey results. We used the 

Shapiro-Wilk test to find that unit testing helpfulness (M=4.09, sd=0.83, p<0.0001) and 

adherence (M=3.07, sd=1.14, p<0.0001) responses are not normally distributed. Likewise 

neither test-first helpfulness (M=3.04, sd=0.99, p<0.0001) nor adherence (M=2.04, 

sd=1.05, p<0.0001) are normally distributed. We used Spearman’s ρ to investigate 

relationships between non-parametric samples. There is a moderately strong positive 

correlation (ρ=0.57, p<0.0001) between unit testing helpfulness and adherence ratings. 

Similarly, there is a moderately positive correlation (ρ=0.50, p<0.0001) between test-first 

helpfulness and adherence. These correlations verify the relationship between perceived 

helpfulness and adherence found in our previous study and supports H4 (positively 

correlated helpfulness and adherence). 

As described in H5, we expected the experimental group to rate the helpfulness of test-

first and unit testing behaviors higher than the control group. To the contrary, a Mann-

Whitney-Wilcoxon test found the control group (M=4.20, sd=0.82) rated unit testing 

Table 4.1. The Average Coverage on Each Project, Separated by Treatment 

 

 Project 1 Project 2 Project 3 Project 4 

Control M=0.82 

sd=0.16 

M=0.68 

sd=0.23 

M=0.79 

sd=0.18 

M=0.87 

sd=0.17 

Experimental M=0.79 

sd=0.18 

M=0.69 

sd=0.22 

M=0.78 

sd=0.18 

M=0.90 

sd=0.11 
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helpfulness greater than the experimental group (M=3.96, sd=0.82) at a difference 

approaching significance (p=0.09). On the other hand, the experimental group (M=3.20, 

sd=1.05) rated test-first helpfulness greater than the control group (M=2.90, sd=0.93) at a 

difference approaching significance (p=0.06).  Neither difference appears to translate into 

a meaningful distinction at the level of the response scale used, however. 

H6 (experimental group will have lower anxiety) addresses comparing scores from the 

WTAS and BFNES scales. Cronbach’s coefficient for WTAS (α=0.90) and BFNES 

(α=0.95) confirmed each scale’s internal reliability. Students in the experimental group 

scored slightly lower for project anxiety (M=2.10, sd=0.91) than the control group 

(M=2.2, sd=0.81) but this difference was not significant (p=0.48). When WTAS scores 

were adjusted relative to each subject’s BFNES score, there was still no significant 

difference (p=0.68) between the experimental (M=1.12, sd=0.58) and control groups 

(M=1.07, sd=0.41). 

Finally, to test H7 (experimental group will be more likely to use TDD in the future), we 

compared each group’s reported likelihood of using TDD in the future. The experimental 

group (M=3.59, sd=1.09) provided higher ratings than the control group (M=3.38, 

sd=1.21) but the difference is not statistically significant (p=0.38). 

4.1.4 Discussion 
We based each of the seven hypotheses on the expectation that the adaptive feedback 

system would persuade adherence to test-driven development (TDD). However, none of 

the statistical analyses provided sufficient evidence to claim it did so. Nevertheless, the 

results provide insight into the plugin’s strengths and weaknesses and can serve as a 

formative assessment of its use as an educational and persuasive tool. 

Although the differences were not quite significant, the experimental group’s higher 

rating of test-first’s helpfulness is worth noting since our previous study identified 

attitudes toward the test-first approach as the primary factor hindering acceptance of 

TDD. This insight into opinions of test-first approach is particularly useful in this 

research since the programming metrics concentrate on incremental unit testing, but 

cannot explicitly observe test-first adherence. Continuing to improve upon that 

impression of a test-first approach has potential for persuading changes in student 

behavior.  

Improving attitudes toward test-first development may be a matter of better 

demonstrating its immediate value. Benefits of early testing—such as improved 

confidence—are difficult to portray concretely. Consequently, it would be valuable to 

investigate students’ expectations and appraisals to build a mental model and make the 

effects of test-first development more salient. 

Likewise, the trends in changing adherence to TDD over the course of a semester show 

promise for potential long-term persuasion. Several factors may contribute to the 

apparent lack of immediate changes in student behavior. Primarily, by the time a student 

receives adaptive feedback, it may be too late to persuade considerable change. Our 

studies have found that students’ first submission for any given assignment often has over 
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half the number of lines of code of their final submission [BE2012][ESP+2009]. Instead, 

students may be more inclined to change their behavior if persuasive interventions begin 

before they have established a pattern of behavior. For this reason, it would be 

worthwhile to explore ways to increase how soon and how often students receive 

adaptive feedback.  

4.2 A Formative Study of Influences on Testing 
Behaviors 

We have published the work described in this section in the article, “Impacts of Adaptive 

Feedback on Teaching Test-Driven Development” and presented it at the symposium for 

Computer Science Education (SIGCSE) [BE2013ii]. 

4.2.1 Background 
With the emergence of automated grading systems that allow students to submit their 

work throughout development, instructors gain improved granularity of students’ work 

patterns. While exams may evaluate how well students understand a development 

technique, snapshots of students’ development over time may reveal how they apply the 

technique. Furthermore, when students receive automated feedback while they are still 

working, there are opportunities to influence their behavior. 

At our university, we teach test-driven development (TDD) in introductory CS1 and CS2 

courses. TDD involves an incremental “test a little, code a little” process meant to 

encourage confidence and improve maintainability [Beck1999]. However, students may 

find the test-first approach unnatural or intimidating. Consequently, they may benefit 

from repeated reinforcement during programming assignments. 

In this paper, we describe a system we designed to encourage students’ adherence to 

TDD. We compare the results of implementing different schedules of reinforcement and 

the presence or absence of specific goals in automated, adaptive feedback. In addition, we 

explore influences on students’ testing behaviors through interviewing them about their 

experiences developing programming assignments and interacting with the adaptive 

feedback system. 

4.2.2 Method 
By introducing our adaptive feedback system to students, we aimed to observe common 

testing behaviors and investigate how the feedback influences those behaviors. Using 

students’ submissions to Web-CAT provides insight into the changes in their code over 

time. However, this approach has two principal limitations in discerning test behaviors. 

Firstly, the data only reflects changes in students’ code after they first submit to the 

automated grading system. We found that the average first submission already had 71% 

(sd=25%) of non-comment lines of code (NCLOC) when compared to their respective 

final submission NCLOC. Consequently, the data is blind to the beginning stages of 

development. 
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Secondly, there is no benefit for students to submit tests before writing the corresponding 

solution code (as encouraged by TDD) since without the solution, correctness will not 

improve. Likewise, Web-CAT cannot evaluate test coverage in the absence of solution 

code. Therefore, we cannot differentiate the incremental patterns “test a little, code a 

little” and “code a little, test a little” since students will only submit test code along with 

solution code. Continuous data collection would be necessary to determine the fine-grain 

order of testing versus coding the solution. 

Consequently, we conducted interviews with students so they could explain their 

development processes and testing behaviors. This mixed-method approach benefits from 

quantitative, empirical analysis from code collection supplemented by explanations and 

clarifications from the students themselves. 

Qualitative Investigation 
While quantitative assessment can offer empirical data demonstrating testing behaviors, it 

lacks insight into explaining why students adopt particular processes and strategies. 

Previous studies have speculated into reasons for students’ attitudes and behaviors from 

anecdotes and surveys [BE2012][MM2005]. However, we recognized a need to speak 

directly to the students in depth. Consequently, at the conclusion of the Spring 2013 

academic term, we recruited students to participate in group interviews to explain their 

personal strategies, procedures, and motivations behind their behavior.  

Twelve students volunteered to participate in the interviews, of whom seven showed and 

consented to participate (5.5% of 128 who sat the final exam). Volunteers were provided 

a meal (valued approximately $10 USD/person) to participate in group interviews for 

about one hour.  

While this sample size may sound small, one should remember that the intent of the 

interviews is to elicit formative feedback rather than to empirically test hypotheses. By 

comparison, user experience studies often report that the majority of findings are 

discovered within the first five participants [Nielsen1993]. Likewise, in the interviews, 

we concentrated on eliciting feedback on students’ experience with the adaptive feedback 

system and generating broad motivations and testing strategies.  

Interviews were scheduled in two groups (n=4 and n=3) so that students could compare 

and contrast their experiences and strategies to generate discussion. Unlike focus groups, 

each participant was specifically prompted to respond to every one of the interviewer’s 

questions and while there was discussion between participants, there was no attempt to 

collaborate on—or agree to—a consensus opinion. 

After providing written consent and doing quick introductions, the group interviews 

began with an opportunity for each participant to explain their top priorities and 

objectives when a programming project is first assigned. Then, the participants were 

asked to each share and discuss their personal testing strategies—including when they 

began testing, testing incrementally or periodically in large portions, and testing first or 

after corresponding solution code. 
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Next, participants were shown an example screen capture of Web-CAT feedback and 

they discussed the different parts of the feedback. Without leading them to specific parts 

of the page, participants were asked to explain what they paid attention to and what was 

most important to them after their first submission to Web-CAT. They were also asked to 

explain what then influenced their next step in development. This series of discussions 

was repeated for screens representing resubmissions where they first earned hints and 

then again, once they achieved high (but not quite perfect) correctness and coverage 

scores.  

Lastly, they were specifically probed on parts of Web-CAT’s feedback to discuss what is 

or is not helpful and how different elements of feedback may play a part in development 

going forward. The screen elements discussed include (visually from top to bottom): 

grade summary, individual file details, adaptive feedback, results from running student’s 

tests, code coverage from student’s tests, estimation problem correctness, and interpreting 

correctness/testing scores. The interviewer particularly encouraged explanations about 

the adaptive feedback’s goals and hints. 

Next, each participant was asked if (and how) their individual testing strategies evolved 

over the duration of the academic term. The group discussions concluded with each 

participant completing a brief questionnaire on paper to reflect on and summarize their 

testing habits. each individual’s reflection over their personal testing habits. The 

questionnaire asked participants to rate how often (from 1, rarely, to 5, often) they did the 

following: 

 Started writing tests early in development 

 Started writing tests late in development 

 Wrote one test at a time to test a small part of the solution code 

 Wrote many tests at a time to test large portions of the solution code 

 Wrote tests before writing its corresponding solution code 

 Wrote tests after writing its corresponding solution code 

Likewise, the questionnaire asked to rate the same six behaviors by “how likely you are 

to do the following in the future, from: (1 Very Unlikely) to (5 Very Likely).” At the 

bottom of the questionnaire, participants had empty space to “Please describe how your 

testing and development strategies may change or stay the same, depending on the size of 

the program you are working on.” Comparing differences between current behavior and 

projected future behavior could reveal influences on long-term testing strategies. 

Finally, each participant was given a blank sheet of paper and a pencil and were asked to 

draw a timeline that depicted their typical project development from when it is assigned 

to the participant’s last submission to Web-CAT. They were given freedom to express 

their development as best they could, but were asked to also identify when they worked 

on the solution, when they tested, and when they submitted to Web-CAT. 

Quantitative Evaluation 
While Web-CAT provides students with feedback upon each submission, it also collects 

a snapshot of their work that we can later analyze. Since we are particularly interested in 
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students’ testing behaviors, we analyzed each submission for both quantity and quality of 

test code as well as that of solution code. Web-CAT allows for part of students’ grades to 

be manually entered by instructional staff by considering aspects such as design and 

documentation. However, to eliminate subjective judgments and potential inconsistency 

between graders, we only included Web-CAT’s automated measurements in our 

quantitative assessment. 

As previously mentioned, correctness describes how well students’ solution code 

performs, as measured against the instructors’ obscured tests. On the other hand, the test 

coverage describes the thoroughness of testing. Coverage represents the percent of 

statements, conditionals, and branches in the student’s code exercised when run against 

her own tests. Influences of feedback on students’ testing will be illustrated in Δ 

coverage, or how coverage on the final submission compares to that of the first 

submission. Positive values represent improvements in coverage while negative values 

suggest complacency or neglecting testing. 

In addition to these measurements of code quality, we examined the quantity of code 

written. Non-comment lines of code (NCLOC) is the self-explanatory amount of 

semantic code. We maintained records of test and solution NCLOC separately to 

compare the relationship between amount of test and solution code. Similarly to 

coverage, we concentrated on how test NCLOC might change in response to adaptive 

feedback. Δ test NCLOC reveals increases or decreases in the amount of test code from 

the first to last submission within an assignment. 

To check for normality of their distributions, we performed the Shapiro-Wilk test on 

measurements used for these metrics. All of the following measurements (with 

significantly small p-values) rejected the null hypothesis of normal distribution: 

correctness (M=0.91, sd=0.16, p<0.0001), first submission test NCLOC (M=129.83, 

sd=125.63, p<0.0001) and coverage (M=0.69, sd=0.32, p<0.0001), and final submission 

test NCLOC (M=247.15, sd=162.20, p<0.0001) and coverage (M=0.98, sd=0.08, 

p<0.0001). Consequently, all comparisons between treatments used Wilcoxon tests for 

non-parametric data. 

Experimental Design 
In Spring 2012, students in a CS2 (Software Design and Data Structures) course received 

feedback for their programming assignments using our adaptive feedback system with its 

initial design with constant (C) reinforcement schedule and hidden (H) coverage goals. 

Students received feedback according to this treatment for the entire term, encompassing 

four independent programming assignments. Of the 129 students who sat the final exam, 

78 (60%) provided written consent to include their data in our analysis. 

Following the preliminary semester, we implemented additional treatments of the 

adaptive feedback system, including delayed (D) and random (R) reinforcement 

schedules, each with separate shown (S) and hidden (H) goal combinations. Of the 128 

students who sat the final exam in 2013, 84 (66%) consented to include their work in the 

data analysis. We planned a 3x2 factorial design of the treatments, treatments would be 
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assigned to the five different course sections for each assignment to enable both within- 

and between-group comparisons. 

However, constraints prevented us from implementing our planned experimental design. 

Firstly, the CS2 instructor developed new projects so that the Spring 2013 offering would 

not replicate the assignments completed in Spring 2012. In good faith, we could not ask 

the instructor and his students to forgo innovative course material for the sake of 

experimental validity. Secondly, we recognized a technical flaw in the adaptive feedback 

when applied to Spring 2013’s first assignment. As a result, we had to exclude Project 1’s 

data and use the semester’s three remaining assignments to make comparisons between 

the five alternate treatments.  

Consequently, we resolved to randomly assign each of the five course sections a unique 

experimental group. While this design excludes the possibility of within-subject 

comparisons, it controls for potential ordering effects of being exposed to different 

treatments on subsequent projects. 

To see if the assignments between the two terms were of comparable size and difficulty, 

we compared the size and outcome of assignments between the two terms. Using the 

Mann-Whitney-Wilcoxon test, we found assignments from 2012 (M=325.79, sd=134.33) 

required significantly more solution NCLOC (p<0.0001) code than those assignments 

given in 2013 (M=290.20, sd=194.85). Moreover, the students performed better (p<0.05) 

on correctness for assignments in 2013 (M=0.91, sd=0.16) than for assignments in 2012 

(M=0.84, sd=0.27).  

Our previous study also found that the CH adaptive feedback treatment in Spring 2012 

failed to improve either testing quality or quantity when compared to the same 

assignments in Fall 2011 (without the adaptive feedback system) [BE2013ii]. 

Consequently, with too many confounding variables in comparing students with different 

outcomes on different assignments with different scopes and difficulties in different 

years, we decided to compare only the remaining five treatments in this study: CS, DH, 

DS, RH, and RS. 

Although the consequential design excludes the 2012 experimental treatment 

combination (CH), CS, RH, and DH provide insight into the individual dimensions of 

CH. While a balanced, full 3x2 factorial design would be ideal for within-group 

comparisons, it was impractical to execute such a controlled design within the constraints 

of the academic term. Since the study’s investigation of influences on student testing 

behaviors is for formative design purposes, between-treatment comparisons should still 

offer valuable insights. 

4.2.3 Results 

Qualitative Investigation 
When describing their initial motivations and objectives once a project is assigned, the 

participants concentrated mostly on reviewing the assignment’s specifications and 

devising broad outlines and plans for completing the solution. However, their opinions 

diverged once discussion lead to testing strategies.  
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Four of the seven participants explained their habits of waiting to test until a substantial 

amount of the solution is complete. Three explicitly stated with confident tone that while 

they understood that the instructor encourages testing early, it only makes sense to them 

to test at the very end of their development process.  

The remaining participants explained that their testing strategy varied between 

assignments. Meanwhile, one participant explained that she felt overwhelmed and 

dissatisfied with her work early in the term until she adopted an incremental testing 

strategy. She reported that she consequently grew more confident in her work and 

improved her grades considerably. 

The responses on the participants’ questionnaires reflected similar behaviors and 

attitudes. All participants reported that they more often start testing late than early in 

development and test after writing solution rather than before. However, reports on 

incremental testing were split. Four participants usually tested in large portions while two 

usually tested in smaller increments and one remaining participant does both equally 

often.  

Nevertheless, on average, participants reported that in the future they expect to 

increasingly test early, test in small increments, and test before coding the solution. 

Correspondingly, they also expect to decrease testing late and testing after coding the 

solution. In other words, participants predicted that in the future, they will draw closer to 

being equally likely to exhibit TDD practices as they are to avoid them. Table 4.2 

summarizes the average ratings for all of the ratings. 

 

The participants who were confident in testing last suggested that their testing strategies 

were not likely to change regardless of the size of the project. One such participant wrote: 

“While we’ve been encouraged to ‘test as we go’, I still feel like it makes the most sense 

to test a method only AFTER it’s completely written.” Others anticipated that larger or 

more challenging projects will require more thought and effort to devote to testing and 

consequently they will need to begin testing earlier. 

Table 4.2. Summary of Questionnaire Responses 
 Current 

Rare 1 - Often 5 

Future 

Very Unlikely 1 – Very Likely 5 

 M sd M sd 

Test Early 1.86 0.63 2.43 0.90 

Test Late 4.29 1.03 3.71 1.16 

Small 

Increments 
2.57 1.29 3.29 1.28 

Large 

Portions 
3.86 0.64 4.14 0.64 

Test First 1.43 0.49 1.71 0.45 

Test After 4.86 0.35 4.14 0.64 
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Participants provided more granularity into their development process by drawing 

timelines. None of the participants illustrated any test-first behavior. Two participants 

represented strictly test-last strategies where the only testing took place as the last activity 

on the timeline. The first timeline in Figure 4.2 provides an example of this test-last 

approach. However, the other five participants all demonstrated some degree of 

incremental testing with at least two iterations of “code a little, test a little.” Notably, 

three of the seven participants illustrated at least one event on their timeline where testing 

and either “debugging” or “fixing” problems or issues were combined as a single marker. 

The lower timeline in Figure 4.2 shows a common “write tests / fix issues” activity near 

the end of the development process. 

In addition to discussing development and testing strategies, participants also provided 

their opinions and experiences with Web-CAT and particularly with the adaptive 

feedback system. Although students expressed appreciation for Web-CAT, there were 

general notions that the feedback page could be more concise. When asked about what 

was most important, what first caught their attention, and what influenced their future 

behavior, participants nearly always identified the red bars that indicate incomplete 

correctness and coverage as focal points. 

When asked specifically about the adaptive feedback, participants explained that they 

understood the intent to encourage more testing. However, as one participant explained 

when talking about the target and coverage goal: “I know why it’s there. But I know I’m 

supposed to get 100% coverage because that is part of the grade. I don’t need this to tell 

me to improve my coverage because I already know that.” Likewise, the participants 

described that the hints were usually important but that they did not usually purposely 

add tests to earn more hints; instead, when they added more tests, they did so to improve 

their coverage score. 
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Quantitative Evaluation 
Since each of the five treatments includes a combination of two dimensions for each 

research question, we adjusted the significance level using Bonferonni correction 

[WJT1999] to counteract testing multiple hypotheses. A Wilcoxon each-pairs test 

compared each of the ten combinations of experimental groups (α=0.008). Likewise, a 

Wilcoxon each-pairs test compared each of the three different treatments (C, D, R) of the 

reinforcement schedule dimension (α=0.0333) independently. Finally, a Wilcoxon-Mann-

Whitney test compared the two treatments (S, H) of the goal dimension (α=0.10) 

independently. 

Since each project required a different amount of work but we want to consider each with 

equal weight, Δ test NCLOC was adjusted to account for difference in project sizes. Its 

 
 

 

 

 
Figure 4.2. Development Timelines Contrasting  

Test-Last Approach (Above) and Periodic Testing (Below) 
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values were divided by the mean solution NCLOC for each respective project: Project 2 

(M=215.67, sd=39.66), Project 3 (M=159.18, sd=21.16), and Project 4 (M=495.75, 

sd=216.87). Larger projects would typically require a greater amount of test code and 

time spent developing. However, when making comparisons across all projects, we are 

concerned with the amount of code and amount of time spent relative to the size of the 

project. Otherwise, large projects (such as Project 4) would unduly influence the results 

due to their considerably larger absolute measurements, before adjustment. 

First, we compared the Δ test NCLOC between all experimental groups and found no 

significant differences, as shown by insignificant p-values in Table 4.3. Likewise, similar 

constant (M=0.25, sd=0.25), delayed (M=0.24, sd=0.27), and random (M=0.23, sd=0.17) 

Δ test NCLOC demonstrated no significant difference between constant and delayed 

(p=0.86), constant and random (p=0.89), and delayed and random (p=0.68) pairwise 

comparisons. In addition, the shown (M=0.25, sd=0.27) and hidden (M=0.22, sd=0.19) 

goal treatments yielded no significant difference (p=0.39). 

 

After finding no differences in quantity of test code, we compared the test code quality. 

Table 4.4 shows the pairwise comparisons between each experimental group. 

 

While no pairwise comparisons were significantly different at the α=0.008 level, DS 

(M=0.35, sd=0.35), CS (M=0.35, sd=0.36), and RH (M=0.31, sd=0.32) approached 

significantly greater improvement in coverage (p=0.01, 0.02, and 0.03, respectively) than 

DH (M=0.20, sd=0.26). When comparing the Δ coverage for the reinforcement 

Table 4.4. Wilcoxon Each-Pairs Comparison of Δ Coverage 

 

(M,sd) CS DH DS RH RS 

CS(.35,.36)  p=.02 p=.96 p=.64 p=.22 

DH(.20,.26)   p=.01 p=.03 p=.21 

DS(.35,.35)    p=.66 p=.20 

RH(.31,.32)     p=.34 

RS(.24,.29)      

 

Table 4.3. Wilcoxon Each-Pairs Comparison of Δ Test NCLOC 

 

(M,sd) CS DH DS RH RS 

CS(.25,.25)  p=.73 p=.49 p=.73 p=.85 

DH(.21,.22)   p=.13 p=.17 p=.40 

DS(.27,.33)    p=.56 p=.41 

RH(.23,.16)     p=.67 

RS(.22,.18)      
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schedules, there was no difference (p=0.16) between constant (M=0.35, sd=0.36) and 

delayed (M=0.27, sd=0.31) reinforcement. There was also no significant difference 

between constant and random (M=0.28, sd=0.31; p=0.37) or between delayed and 

random (p=0.42). However, shown goals (M=0.32, sd=0.34) nears significantly greater 

(p=0.10) Δ coverage than hidden goals treatment (M=0.26, sd=0.30). 

4.2.4 Discussion  
Both quantitative and qualitative investigations verify suggestions from previous studies 

that students are hesitant to adhere to test-first procedures. However, the group interviews 

in particular revealed unique insight into students’ reasons for their behaviors. The 

students who expressed particularly strong reluctance to follow test-driven development 

(TDD) also happened to be students who were especially confident in their programming 

skills. Still early in their computer science education, they did not seem to have been 

challenged enough by programming assignments to warrant changing their habits of 

concentrating on coding the solution alone.   

While it is encouraging to hear one participant find her confidence by using TDD, it was 

even more revealing to examine students’ development timelines. The proximity of 

testing and its frequent association with debugging suggest that within students’ mental 

models, testing is a process for fixing problems rather than proactively avoiding them. In 

order for students to adopt different behaviors, this mental model would have to change. 

Quantitative analysis of the adaptive feedback system does not reveal significant 

differences between reinforcement schedules on influencing student testing. However, 

with the conservative Bonferonni correction and the constrictions of only leveraging 

between-group comparisons, it may be worthwhile to continue exploring reinforcement 

schedules. 

On the other hand, while students commented that the salient testing goal did not change 

their behavior, the change in coverage after seeing the coverage goal was greater than in 

its absence at a nearly significant level. While it is unlikely that any rewards or 

gamification techniques will ever influence students’ behaviors as much as the 

expectations set by graded requirements, we observed a strong impact that simple red-to-

green status bars have on students’ attention.  

Dissonant visual cues such as error icons, incomplete progress bars, or unattended 

notifications may implicitly change student behaviors as they are compelled to resolve 

the dissonance. Correspondingly, introducing similar visual cues of incomplete testing 

coverage within students’ integrated development environment has potential for 

motivating change. Future work needs to explore such implicit interventions, particularly 

if they can be delivered directly to the students’ development environment instead of 

relying on them to actively seek feedback. 
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4.3 Responses to Adaptive Feedback 
We have published the work described in this section in the article, “Responses to 

adaptive feedback for software testing” and presented it at the conference on Innovation 

and Technology in Computer Science Education (ITiCSE) [BE2014i]. 

4.3.1 Background 
Melnik and Maurer acknowledged that adopting Agile methods may be more challenging 

in an academic setting than it is in industry. Consequentially, they surveyed students’ 

opinions of different aspects of eXtreme Programming (XP), including test-driven 

development (TDD). They found generally positive views of all aspects of eXtreme 

Programming from 240 respondents, representing a variety of demographics with 

differing degrees of experience and exposure to XP [MM2005]. In addition, they 

discovered a weak positive correlation between attitudes toward TDD and students’ ages.  

However, they also found that some students struggled to think with a test-first approach. 

They reasoned this difficulty may be due to TDD “almost like working backwards” by 

drawing attention to documenting design early through writing unit tests [FAB+2003]. 

Similarly, Janzen and Saiedian compared the opinions and acceptance of TDD between 

novice and mature developers in computing courses. They found that mature developers 

are more willing to accept TDD. Furthermore, students were significantly more likely to 

choose to follow TDD in the future after having tried it [JS2007]. 

To aide teaching TDD, Spacco and Pugh leveraged Marmoset [Spac2013], a rich 

submission and automated grading system. Students benefit from receiving prompt, 

online feedback including how their code performs against the tests. Despite the 

emphasis and prompt feedback on testing, Spacco and Pugh recognize that many students 

still favor a “test-late mentality of writing their implementation and then testing it at the 

very end” and call for a need to design incentives to motivate students to test early 

[SP2006]. 

Positive reinforcement can be a powerful tool in motivating new behaviors. Schedules of 

reinforcement have shown to encourage target behaviors in both games and learning 

environments [LKL+2011]. Linehan suggests a model for leveraging Applied Behavior 

Analysis to motivate target behaviors through a process of measuring performance, 

analyzing performance, presenting feedback, and defining a rewards schedule that 

coordinates with the target behavior. Likewise, we have the unique opportunity to 

measure, analyze, and use reinforcement and punishment to influence students’ 

development processes. 

To modify human behavior, operant conditioning usually depends on four mechanisms: 

stating the goal, tracking the behavior, rewarding target behavior with positive 

reinforcement, and discouraging deviations from the target behavior [PC2004]. For 

example, providing rewards as incentives for demonstrating the target behavior provides 

positive reinforcement. Then, when the subject does not demonstrate the target behavior, 

the rewards can be removed (negative punishment) and the subject reprimanded (positive 

punishment).  



www.manaraa.com

52 

 

Meanwhile, we have been teaching TDD in CS1 and CS2 courses. In a preliminary study 

of a five-year data set of snapshots of students’ work, we found positive correlations 

between indicators of incremental testing and consequential outcomes. Specifically, we 

identified two measurements of quantity of testing average test statements per solution 

statements (TSSS) and average test methods per solution method (TMSM) with small but 

statistically significant correlations with functional correctness and test coverage. 

Similarly, average test coverage across all snapshots for an assignment was positively 

correlated with final functional correctness [BE2012i]. However, despite its advantages, 

we also witnessed some students who resisted adhering to TDD. 

In a separate study, we investigated students’ attitudes toward the test-first and 

incremental unit testing aspects of TDD [BE2012ii]. Similar to reports in related 

literature, we discovered that students generally appreciated the value of testing but were 

apprehensive to adopt test-first habits. While students valued an incremental unit-testing 

approach, most students did not follow strict test-first procedures. Likewise, we identified 

a close relationship between students’ perception of how helpful these aspects of TDD 

are and how likely they are to adhere to them.  

This relationship is likely reciprocal in that expecting TDD to help should make students 

more likely to adhere; likewise, adhering to TDD should advocate students’ appreciation 

of its benefits. However, most students reported that did not persistently write tests in 

small increments nor did they test first. For these reasons, we recognized a need to better 

understand students’ development processes and investigate approaches to encouraging 

adherence to TDD. 

4.3.2 Method 
A Model for Adaptive Feedback 
To observe students’ development processes, it is necessary to gain insight into changes 

in their work over time. By using Web-CAT [9]—an automated grading system—to 

collect student submissions and provide rapid evaluation of their performance, students 

are encouraged to submit several versions of their work as they refine their assignments. 

Among other features, Web-CAT evaluates students’ code on its correctness and 

coverage. Correctness is determined by the percent of instructor-provided tests (obscured 

from students) successfully passed by the student’s solution. Coverage is determined by 

the amount of solution code evaluated by the students’ own unit tests. Upon submitting 

their work, students promptly receive results of their correctness and coverage scores. 

Students may submit their work unlimited times, without penalty, until the assignment 

deadline. 

Each time students submit and receive feedback, there are opportunities to assess their 

adherence to incremental testing methods and trigger interventions to encourage the 

desired behavior. Ideally, incremental testing would be demonstrated by maintaining high 

(at or near 100%) coverage while the correctness gradually increases. Consequently, we 

designed the system to reinforce this behavior and to correct students who deviate from 

it. 
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Our adaptive feedback system supplements Web-CAT’s correctness and coverage 

assessment by monitoring progress from one submission to the next. Students receive 

positive reinforcement through images and brief messages acknowledging improvements 

in their solution and/or testing, as shown in Figure 4.3. When their submissions do not 

demonstrate improvement, the feedback encourages them to improve their testing by 

offering additional incentives. In particular, students receive hints about how to improve 

their solution as a reward for improving the thoroughness of their testing. Figure 4.3 

illustrates reinforcing feedback with two hints displayed. 

The system adaptively caters hints to help students correct problems with their solutions 

that are identified by failed instructor tests. Each instructor unit test includes a hint 

message to provide some guidance about why it failed. Closely related instructor tests 

may generate identical hint messages, but duplicates are combined and the collection of 

hints is sorted so precedence is given to hints with more occurrences. 

Students earn their first hint from their first submission that demonstrates some progress 

on both the solution and testing with non-zero correctness and coverage scores. To earn 

additional hints on subsequent submissions, students have to meet a minimum threshold 

of coverage (initially ≥85%) to demonstrate they are testing their solution substantially. 

Given the minimum coverage is met, students can earn hints by either maintaining 100% 

coverage and making changes to their solution code, or by improving their coverage over 

the previous submissions. Following this model, students are required to begin testing in 

early submissions and continue to meet progressively higher coverage requirements as 

they progress. 

If a student earns hints on sequential submissions, she may receive the same hints in both 

submissions’ feedback. On its face, this approach may not seem to reward the student for 

earning hints. However, it allows the student to track the flaws in her assignment. For 

example, if a previously seen hint is replaced by a new hint, one may falsely conclude 

that the bug that generated the hint has been resolved. Instead, earned hints are only 

dismissed once their corresponding instructor test passes. 

If students deviate from the incremental testing process, they do not receive hints on their 

submissions until they demonstrate sufficient coverage again. The system also controls 

for potential attempts to get additional hints by artificially manipulating measurements of 

progress. For example, the system records the highest correctness score achieved so far to 

prevent students from deleting or sabotaging their solution in one (worse) submission 

 
Figure 4.3. The Web-CAT Plugin Displays Adaptive Feedback with Positive 

Reinforcement and Hints. 
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only to give the illusion of improvement by reverting to the previous (better) solution in 

the next submission. 

Intervention Design 
We integrated our adaptive feedback model into Web-CAT for students to submit their 

programming assignments. During the Spring 2013 academic semester, we introduced 

CS2 (Software Design and Data Structures) students to the adaptive feedback system. Of 

the 128 students who sat the final exam, 84 (66%) provided written consent to include 

their data in our analysis. Assignments included: (1) maintaining a list of digital photo 

metadata, (2) solving a maze with two-dimensional arrays, and (3) implementing both 

array- and link-based queues. In addition, students from each of the five sections of the 

course used different variations of the adaptive feedback system.  Treatments included 

combinations of consistent or intermittent reinforcement and either with- or without- a 

visible goal for improving test coverage. The consistent reinforcement treatment 

rewarded students with hints every time they met the incremental testing criteria while 

intermittent reinforcement treatments only rewarded the students with hints at most once 

per hour or at random chance (after meeting the same criteria). The goal treatments either 

always showed the coverage threshold necessary to earn a hint or always obscured it. In a 

separate study, we analyzed the different treatments with inconclusive long-term 

outcomes [BE2013ii][BE2014ii]. However, in this study we concentrate on the 

immediate responses students demonstrate after receiving hints. 

Evaluation 
To observe students’ short-term behavioral responses, we identified whether the feedback 

for each submission: received additional hints, maintained the same number of hints (but 

earned no additional hints), or received no hints. Accordingly, we inspected changes in 

students’ work in their successive submissions. In particular, we considered the 

difference in the amount of code between the latter and former submissions. We recorded 

changes (∆) in non-comment lines of code (NCLOC) for the solution and the tests 

independently. Likewise, we measured the change in test coverage as well as changes in 

the number of assertions in the students’ test code. 

Since the adaptive feedback system follows protocol for operant conditioning to 

encourage incremental testing, we suspected students to increase their testing efforts after 

receiving positive reinforcement. Specifically, we made the following hypotheses: 

1. After receiving additional hints, students will be more likely to make any 

changes in their test code than after they do not receive additional hints. 

2. After receiving additional hints, students will add significantly more test 

code than after they do not receive additional hints. 

3. After receiving additional hints, students will add significantly more test 

assertions than after they do not receive additional hints. 

4. After receiving additional hints, students will improve coverage 

significantly more than after they do not receive additional hints. 

To address hypothesis 1, we first categorized types of change to test code. Adding new 

test methods constituted major changes, adding only new test NCLOC signified moderate 

changes, and any changes that did not require changing the number of test NCLOC were 
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minor changes. Using chi-squared test, we compared the distribution of these types of 

change after receiving: additional hints, same hints, and no hints. To test hypothesis 2, we 

used a Wilcoxon signed-rank test to compare ∆ test NCLOC in submissions after 

incidents of additional, same, and no hint reinforcement. To control for potential 

differences between individuals’ behaviors, we also performed a within-subject analysis 

of variance using Friedman’s test for non-parametric repeated measures. We followed the 

same Wilcoxon and Friedman test design to compare affects to the ∆ test assertions for 

hypothesis 3 and the ∆ coverage for hypothesis 4. 

4.3.3 Results 
Across three programming assignments during the semester, we analyzed 3115 

submissions. Since students’ first submissions (170 out of 3115 submissions) to each 

assignment do not represent responses to the adaptive feedback intervention, their data 

was not included in comparing changes in code. 2169 (~74%) of the submissions 

followed submissions with no hints, while 524 (~18%) received the same number of hints 

and 252 (~9%) received additional hints. As described in the previous section, we 

categorized types of changes to test code as minor (1429, ~49%), moderate (856, ~29%), 

and major (650, ~22%). Figure 4.4 illustrates the distribution of how additional, same, 

and no hint groups responded with minor, moderate, and major test changes. 

We performed a chi-squared test to examine the relation between hint group and the type 

of change response. The relation between these variables was significant X2(4, 

N=2945)=41.45, p<.0001 and there was no significant interaction with the subject 

variable X2(2, N=2945)=3.53, p=.15. These results support hypothesis 1 that the greater 

likelihood of making major test changes after receiving additional hints is not due to 

chance. 

We performed a Friedman test and found that the hint group variable had a significant 

effect on ∆ test NCLOC F(2,1)=15.48, p<.0001. We used a Wilcoxon test to compare ∆ 

test NCLOC between each pair of hint groups. We also used the Bonferroni correction to 

 
Figure 4.4. Probability of Types of Response to Hints 
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adjust the critical p value (α=0.0167) for multiple comparisons.  The additional hints 

(M=9.52, sd=23.80) group responded with significantly greater ∆ test NCLOC (p<.0001) 

than same hints (M=1.89, sd=18.51) and no hints (M=5.31, sd=17.59, p<.01). No hints 

responded with significantly greater ∆ test NCLOC (p<.0001) than same hints. To test 

hypothesis 3, we performed a Friedman test and found that while the hint group variable 

had no significant effect on ∆ test assertions F(2,1)=7.79, p=.67. The ∆ test assertions 

were low for additional hints (M=0.54, sd=3.26), same hints (M=0.35, sd=3.01), and no 

hints (M=0.36, sd=3.12).   

However, we tested hypothesis 4 by performing a Friedman test on ∆ coverage and found 

a significant effect of hint group on ∆ coverage F(2,1)=13.39, p<.0001. To compare 

differences between each pair, we performed a Wilcoxon test (α=0.0167) and found that 

additional hints (M=0.03, sd=0.13) responded with greater ∆ coverage (p<.0001) than 

same hints (M=-0.01, sd=0.05) but was not significantly greater than no hints (M=0.02, 

sd=0.11); moreover, no hints responded with greater ∆ coverage (p<.0001) than same 

hints. 

The initial statistical analysis provided support for hypotheses that students respond to 

additional hints as reinforcement with greater likelihood of adding test code and with 

greater amounts of test code. While tests did not support the hypotheses that test 

assertions would also increase, they did find that coverage increases. We also observed a 

recurring pattern across all the measurements where additional hints had the highest 

means while some hints had the lowest. Curious from this observation, we also 

investigated comparisons in other changes in students’ code with post-hoc tests.  

We performed a Wilcoxon test and found that after receiving additional hints (M=5.94, 

sd=23.44), students responded with greater (p<.01) ∆ solution NCLOC than same hints 

(M=1.42, sd=13.81) and no hints (M=1.70, sd=17.09, p<.0001) while no hints 

approached significantly greater ∆ solution NCLOC (p=.0293, α=0.0167). Similarly, we 

compared the elapsed time (in minutes) from the previous (intervention stimulus) to 

subsequent (response) submissions and found that additional hints (M=307.21, 

sd=1120.52) responded after more time (p<.0001) than same hints (M=111.45, 

sd=485.15) and no hints (M=227.73, sd=931.13). There was no significant difference 

(p=.07) between the elapsed time of no hints and some hints.  

Consequently, we see that after additional hints, students produce more test code and 

more solution code but also take more time to do so. Therefore, it is possible that the 

additional code written was an artifact of taking more time than rather than as a response 

to positive reinforcement. Moreover, we found that elapsed time between submissions 

varied greatly. As a result, we categorized elapsed time by quartiles: quick included 

elapsed time under 3.47 minutes, short included longer elapsed time but within 8.85 

minutes, medium included elapsed time greater than 8.85 but less than 31.93 minutes, 

and long included the remaining quartile of submissions with greater elapsed time. Table 

4.5 shows the ∆ test NCLOC (with mean and standard deviation) for hint groups with 

subgroups for elapsed time.  
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We see that in quick resubmissions, the average ∆ test NCLOC for each hint group is less 

than one line of code changed. That might be expected since the minimal time elapsed 

between submissions suggests that students gave little to no time to read the Web-CAT 

results before making small changes and resubmitting.  

We performed Wilcoxon each-pairs comparisons between hint groups with each elapsed 

time interval independently. After quick time elapsed there is no significant difference 

between additional hints and same hints (p=.91) or no hints (p=.63) and no significant 

difference between same hints and no hints (p=.18). After short time elapsed, there is no 

significant difference between additional hints and no hints (p=.99) but approaches 

greater ∆ test NCLOC than same hints (p=.04). No hints demonstrates significantly 

greater (p<.01) ∆ test NCLOC than same hints. Likewise, after medium time elapsed, 

there is no significant difference between additional hints and no hints (p=.93) but 

approaches greater ∆ test NCLOC than same hints (p=.04). No hints demonstrates 

significantly greater (p<.0001) ∆ test NCLOC than same hints. After long time elapsed, 

additional hints has greater ∆ test NCLOC than no hints (p<.01) and same hints 

(p<.0001) and no hints also has greater ∆ test NCLOC than some hints (p<.0001).  

One should also note that since the incidents of additional and same hints groups are 

considerably smaller when considering each interval independently (quick: n=33 and 

134, short: n=70 and 154, medium: n=70 and 132, long: 79 and 104, respectively) so it is 

more difficult to find significant results. Nevertheless, we continue to observe a trend 

where same hints group responds with the fewest changes in their test code. 

One possible explanation for most of the tests showing the greatest changes in test code 

after receiving additional hints is that students may be in a period of their development 

where they are mostly concentrating on testing. By improving their test coverage, they 

earn the additional hints and then may submit to observe their progress and then continue 

adding test code until they are satisfied with their test coverage. Such a pattern would 

suggest that receiving hints may have no influence on their behavior. 

To investigate this case, looked exclusively at instances when students exhibit the target 

behavior (as identified by the adaptive feedback system) and compare their responses 

after being rewarded with new hints to those when no additional hints are received. 

Students may not receive additional hints despite earning them either because the system 

had no more hints to provide (because the student’s solution did not have sufficient 

flaws) or because the reinforcement schedule treatment (described in section 3.2) 

Table 4.5. Change in Test NCLOC by Elapsed Time 
 Hint Group (M,sd) 

 Additional Same No 

Quick -0.15, 20.75 -0.28, 7.70 -0.16, 14.89 

Short 2.67, 10.51 0.16, 11.28 3.23, 12.80 

Medium 7.20, 15.06 3.58, 9.84 5.87, 11.66 

Long 21.70, 33.34 5.12, 36.41 12.34, 24.87 
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withheld reinforcement on that particular submission. We identified these instances as 

unacknowledged (n=153, no hints shown despite earning some) or unrewarded (n=179, 

some hints shown but not additional, as earned) groups. By comparing these groups, we 

can observe the impact a hint reward has on students continuing the target behavior on 

subsequent submissions after exhibiting it for the previous submission. 

We compared responses after additional hints to those after unacknowledged and 

unrewarded groups. While correcting the threshold for significance when making 

multiple comparisons (α=0.0167), we performed each-pairs comparison using the 

Wilcoxon test. We found that additional hints (M=9.52, sd=23.80) responded with 

significantly greater ∆ test NCLOC (p<.0001) than unacknowledged (M=1.57, sd=13.99, 

p<.0001) and unrewarded (M=0.55, sd=8.06) submissions. There was no significant 

difference (p=.36) between unacknowledged and unrewarded groups. In these cases, 

students exhibited similar behavior by initially satisfying the adaptive feedback system’s 

criteria for incremental testing, but responded differently depending on whether or not 

they received additional hints. 

4.3.4 Discussion 
The statistical analysis supported three hypotheses: 

1. After receiving additional hints, students will be more likely to make any 

in their test code than after they do not receive additional hints. 

2. After receiving additional hints, students will add significantly more test 

code than after they do not receive additional hints. 

4. After receiving additional hints, students will improve coverage 

significantly more than after they do not receive additional hints while 

tests for one hypothesis was inconclusive: 

3. After receiving additional hints, students will add significantly more test 

assertions than after they do not receive additional hints. 

In general, the changes in the number of test assertions from one submission to the next 

were small (M=0.38, sd=3.11) so change in test code NCLOC (M=5.06, sd=18.45) offers 

more substantial alterations and consequently may be a better indicator of the short-term 

responses to adaptive feedback stimuli. While there are many factors that may influence 

changes students’ code from one submission to the next, we found that after receiving 

rewards reinforcing incremental testing, their responses usually exhibited greater 

increases in test code. Even when comparing only submissions following demonstrations 

of incremental testing, those who received positive reinforcement responded by 

continuing to add more test code than those who did not receive rewards. 

Likewise, when controlling for the amount of time elapsed between submission, we 

found that responses to receiving additional hints often increased test code more than 

those after receiving no hints. In turn, those receiving no hints often increased test code 

more than those who received hints, but no more than they had previously earned. Upon 

initial consideration, this pattern may seem counter-intuitive. To the contrary, the 

responses are consistent with principles of operant conditioning. 
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Receiving additional hints is an example of positive reinforcement—adding a stimulus 

that rewards a behavior and consequently increases the frequency of that behavior. 

Receiving no hints is an example of negative punishment—removing a pleasing stimulus 

(hints) to decrease the behavior. However, by neither adding nor removing hints, the 

behavior is neither incentivized nor discouraged. Consequently, receiving hints may 

encourage students to continue their incremental testing while removing hints may 

dissuade them from behaviors that do not exhibit incremental testing. 

We considered that the insight provided by the contents within hints might have a greater 

impact on changes in students’ test code than whether or not their behavior received 

reinforcement. However, it should be noted that hints only describe flaws in the students’ 

solution code. Students may be able to extrapolate missing test case(s) from a hint, but 

both hint selection and wording concentrate on students’ solution code and disregard their 

test code (e.g. “setCell() should not allow the starting cell to be set to a wall.” for the 

maze solver assignment). Specific feedback on test coverage—both by line of code and 

as a percentage of all the code—is available regardless of whether a hint is provided.  

More importantly, at the moment of the resubmission, those who responded to additional 

hint stimuli did not necessarily have greater insight from more hints. For example, a 

student who previously earned three hints and satisfied the criteria to earn a fourth—but 

did not because of the reinforcement strategy—would have seen more hints than another 

student who only just received his first new hint. If we consider every unique hint that a 

student had received for an assignment up until the stimuli response, responses to 

receiving additional hint (M=1.81, sd=1.25) had actually seen fewer hints (p<.0001) than 

those who earned an additional hint but did not receive one (M=2.30, sd=1.29). 

Nevertheless, we should also acknowledge that the presence (or absence) of hints were 

not the only stimuli received upon submission to Web-CAT. Since Web-CAT is an 

automated grading system, it also provides indicators of the student’s current score, along 

with some other analysis of their code. While hints appear to play a role in influencing 

students’ immediate behavior, the scores that determine their grades also motivate them 

considerably [BE2014ii]. Grade calculation for the programming assignments in our 

study included students’ test coverage, but did not necessitate adherence to an 

incremental testing process. 

Conclusion 
In this study, students received rewards from an adaptive feedback system after 

exhibiting behaviors conducive to an incremental testing process. Rewards included 

social acknowledgement via digital “badges” and an encouraging message along with 

hints that guided students toward fixing flaws in their code. From 3115 submissions to 

the adaptive feedback system over the duration of an academic term, we analyzed 

changes in students’ code from one submission to their subsequent submission. 

We compared changes in test and solution non-comment lines of code (NCLOC), number 

of test assertions, and test coverage. Statistical analysis suggested that after receiving 

additional hints as rewards, students responded with significant increases in the amount 

of test code and coverage. Observations of increases in the amount of test code persisted 
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when considering within-subject comparisons as well as when accounting for time 

elapsed between submissions and for behaviors exhibited before the previous submission. 

Our findings are consistent with operant conditioning techniques of increasing target 

behavior with positive reinforcement and discouraging undesired behaviors with negative 

punishment. Meanwhile, lack of either overt reinforcement or punishment often resulted 

in fewer tests added than either positive reinforcement or negative punishment. 

Consequently, the study provides evidence for significant differences in short-term 

responses to rewards offered by adaptive feedback systems. However, despite invoking 

short-term responses, our accompanying studies found no impact on long-term behavioral 

change nor final outcomes of software quality [BE2013ii][BE2014ii]. Future work is 

necessary to build upon the short-term effects of adaptive reinforcement to support the 

ambitious goal of affecting behavioral change on the complex task of as software 

development.
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Chapter 5 

Models of Testing Strategies and Outcomes 
 

 

 

 

 

 

This chapter concentrates on the third research objective: “Characterize software 

testing strategies demonstrated by students and evaluate their consequential 

outcomes.” The first section (5.1 Effective and Ineffective Software Testing Behaviors) 

describes a study that analyzes a large dataset of students’ programming assignments to 

identify trends in testing behaviors that result in fewer bugs and better tests. The 

subsequent section synthesizes findings from previous chapters with the general trends 

identified in Section 5.1 to propose a new framework for scaffolding testing behaviors. 

5.1 Effective and Ineffective Software Testing Behaviors 
We have published the work described in this section in the article, “Effective and 

Ineffective Software Testing Behaviors by Novice Programmers” and presented it at the 

International Computing Education Research (ICER) conference [BE2013i]. 

5.1.1 Background 
This paper describes a study conducted on a 5-year (10-semester) dataset involving 

introductory programming assignments completed by 883 unique students.  After being 

taught TDD, students were required to write software tests as part of each solution, and 

an automated grading system was used to collect their work.  Students were allowed to 

make multiple submissions to receive feedback and refine their work as they developed 

their solution.  As a result, the dataset includes a total of 49,980 separate attempts at the 

programming assignments given to the students in the study, representing a series of 

snapshots of the work-in-progress of each student.  By examining relationships between 

when students add software tests to their projects and how thoroughly they test their own 

code, this study shows that there is a positive relationship between early testing and more 

positive student outcomes on programming assignments, including better scores and 

reduced likelihood of turning in work late. 

5.1.2 Method 

Data Collection 
In introductory computer science courses at our university, students submit their 

programming assignments to Web-CAT. After submitting, students receive prompt 

feedback, including scores for the correctness of their code and their test coverage. The 

percentage of instructor-provided reference tests that pass when run against a student’s 
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code determines the correctness score. Meanwhile, test coverage is calculated based on 

how much of the student’s code—a composite of methods, statements, and branches—is 

executed by their tests. 

After receiving feedback from Web-CAT, students may revise their code and resubmit as 

many times as they like without penalty. Their assignment grade is determined by their 

final submission. The score calculation includes: correctness, test coverage, and style. 

Instructors and/or assistants often assign a portion of each program grade by hand by 

evaluating documentation and design; however, we exclude this aspect of assignment 

scores in our analysis to avoid issues with subjectivity and consistency between human 

graders. In addition, assignments are sometimes submitted after the deadline, which may 

involve a score penalty depending on a course’s policies regarding late work. However, 

late submission penalties are disregarded in our analysis of student program scores to 

avoid misrepresenting the actual quality of the solution and software tests produced. 

To perform a comprehensive analysis of student testing behavior, we used a five-year 

dataset of programming assignment submissions from our CS1 course: Introduction to 

Object-oriented Development I. The dataset includes each full-length semester from 

Spring 2004 to Fall 2008. We excluded data from summer semesters because summer 

schedules are abbreviated and consequently the courses differ considerably in pace and 

structure. 

The ten-semester data set includes 49,980 submissions for 3,715 scored assignments, 

with an average of over 12 submissions by each individual student completing each 

separate assignment. The data reflects the work of 883 unique students. While several 

assignments were used for more than one semester, both the assignment instructions and 

number of assignments varied between semesters. 

To observe students’ behaviors during development, we analyzed each of their 

submissions for each assignment. In addition to quality of code—as measured by 

correctness and test coverage—each submission also included data on the time of 

submission, amount of solution code, and amount of test code. In particular, we 

concentrated on the following metrics: 

 NCLOC: Non-comment lines of code, separated into lines that are part of the 

student’s solution and lines that are part of the student’s software tests. 

 Time Remaining: The amount of time between when a submission was made and 

the assignment deadline. Negative values represent submissions made after the 

deadline. 

 Time Elapsed: The amount of time between the students’ first submission for that 

assignment and the current submission in question. 

 Relative Worktime: The amount of time elapsed, expressed as a percentage of the 

total duration over all of the student’s submissions for an assignment. Zero- and 

one-values represent the first and final submissions by that individual, 
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respectively. This metric disregards the relationship between submission time and 

the assignment deadline. Instead, it represents the progression of time within the 

workflow of development. 

Since assignments vary in scale and complexity between courses and semesters, the 

amount of code varies greatly between assignments; the final submission NCLOC mean 

is 587.6 and standard deviation is 729.6. In addition, this study concentrates on testing 

behaviors so we are more concerned with the amount of test code compared to the size of 

the solution at any given time. 

Accordingly, we concentrate on the test NCLOC relative to the amount of solution 

NCLOC. Low relative NCLOC (nearing zero) indicates a lack of test code relative to the 

amount of solution code that has been written. Meanwhile, high relative NCLOC 

indicates that the student has developed comparable amounts of both test and solution 

code. In some cases, students produce more test code than solution code and 

consequently have a relative NCLOC value greater than one. 

By capturing multiple submissions per assignment, snapshots of students’ development 

provide insight into their behaviors over time. We analyzed student submissions over 

time and identified significant milestones in their development processes. The first 

submission within an assignment offers a preliminary glimpse of a student’s code. While 

students often write a considerable amount of code before their first submission, it is the 

earliest available snapshot of their work and comparisons to later submissions indicate 

changes and behaviors that occur as the student continues to refine his or her work. 

Since students were taught test-driven development (TDD), which encourages early and 

incremental testing, we identified when in their development they first achieved 

substantial test coverage (at least 85% of their code at that moment is covered) on each 

assignment. In this paper, we refer to this submission as the test threshold milestone. 

When students follow TDD strictly and write quality tests, their test threshold milestone 

should take place very early in development. However, postponing testing pushes the test 

threshold milestone to later submissions, perhaps even to a student’s final submission. 

Students sometimes continue to submit their work after they have achieved their highest 

correctness score.  This occurs because their score reflects more than just correctness, and 

other aspects of their solution (or testing) may still need improvement. We refer to the 

first time they achieve their highest correctness as the maximum score milestone.  Some 

submissions following this milestone may represent attempts (but failures) to raise their 

correctness score. However, some students continue to submit after achieving perfect 

correctness scores, usually in an attempt to improve another aspect of their grade beyond 

correctness. 

Finally, a student’s final submission marks the milestone of completing the assignment. 

This milestone is particularly valuable in observing students’ qualitative and quantitative 

outcomes—final correctness and coverage in particular. Additionally, by comparing an 

earlier submission to the final milestone, we can observe students’ progress relative to 

their completed work. 
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Grouping Data 
To extract effective and ineffective behaviors, we must first identify assignments with 

positive and negative outcomes. First, we investigate the final correctness score of each 

assignment to distinguish good- and poor-quality solutions. Our courses use a 10-point 

graduated letter-grade scale, where A/B/C/D/F grades are designated by 90/80/70/60% 

and below, respectively. We identified A/B correctness scores (80% and above) as good 

outcomes and C/D/F (below 80%) as poorer outcomes. 

Often, researchers compare behaviors of higher-performing students with those of lower-

performing students. However, it would be hasty to make conclusions about the effects of 

behaviors based only on correlations with outcomes. Outcomes may reflect differences in 

undetected behaviors or other external factors. For example, students who score well on 

assignments may devote more time to their projects or demonstrate other “good work 

habits.” Meanwhile, students with worse scores may exhibit “bad work habits” such as 

procrastinating or neglecting the amount of time a project requires. However, an entirely 

different type of behavior (such as the adherence to effective software engineering 

strategies) may result in the differences in their outcomes as well. 

To address this concern, we grouped students by how they performed on all of their 

assignments. The A/B group includes students who earned correctness scores of 80% or 

better on each of their assignments. Likewise, the C/D/F group consists of students who 

never scored 80% or better on any of their assignments. Lastly, the varied-performance 

group submitted at least one assignment earning 80% or better and at least one 

assignment below 80%. Figure 5.1 shows the distribution of assignment correctness 

scores.  

 

 
Figure 5.1. Distribution of Final Correctness Scores for All Assignments 
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Of the 883 unique students, 307 (35%) belong to A/B group, 170 (19%) to C/D/F group, 

and 406 (46%) belong to varied-performance group. Table 5.1 summarizes mean 

outcomes (correctness, coverage, relative NCLOC, time remaining, and time elapsed) of 

each of these groups. By concentrating on the varied-performance group, we can perform 

within-subject comparisons to identify behavioral differences between when a student 

scored well and when he/she performed poorly. 

We compared behaviors of assignments earning A/B and C/D/F correctness outcomes 

using an unbalanced, partial-factorial design. Assignment correctness group (A/B vs. 

C/D/F), semester, and subject (individual student) were the factors in a 2x10x406 

experimental model. Analysis of variance was performed between groups, but within-

subjects. Since each semester used a unique set of assignments, students only enrolled in 

one semester, and students had varying numbers of A/B or C/D/F scores, subjects could 

not appear in each combination of factors. Although the unbalanced, partial-factorial 

design weakens the power of the statistical results, the statistical tests also benefit from 

the dataset’s large size. 

After investigating varied-performance, within-subject differences, we also compared 

trends of the consistently scoring A/B and C/D/F groups. By comparing when these 

groups start and finish their development and how their testing changes over that time, 

we can isolate behaviors specific to well- and poor-performing students. 

Furthermore, we examined the testing metrics at the development milestones of the 

varied-performance group.  There is a clear bimodal distribution of the relative worktime 

of the testing threshold milestone. In other words, there are distinct periods within an 

assignment’s development when students achieve substantial coverage. We partitioned 

test development time into four groups: early, intermediate, late, and neglectful. The 

“early testers” reached the testing threshold within the first 20% of their relative 

worktime. “Late testers” reached the same milestone within the last 20% of their relative 

worktime. “Intermediate testers” reached the milestone between those groups, while 

“neglectful testers” never achieved 85% coverage. Figure 5.2 shows the distribution and 

partitioning of the testing threshold relative worktime. 

Table 5.1. Summarized Final Outcomes, With Students Grouped By Their 

Performance on All Their Assignments 
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Correctness 
(M, sd) 

Coverage 
(M, sd) 

Test:Solution 
Relative NCLOC 

(M,sd) 

Time 
Remaining 

(Hrs)  
(M, sd) 

Time 
Elapsed 

(Hrs) 
(M, sd) 

A/B 
only 

307 1324 0.97, 0.06 0.95, 0.06 0.92, 0.45 30.72, 64.15 37.82, 48.71 

Varied 406 1891 0.76, 0.33 0.87, 0.20 0.77, 0.40 18.97, 61.28 28.56, 42.65 
C/D/F 

only 
170 500 0.27, 0.29 0.64, 0.31 0.53, 0.35 6.74, 46.48 21.92, 34.94 

Total 883 3715 0.76, 0.34 0.87, 0.21 0.79, 0.43 21.51, 61.07 30.97, 44.33 
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5.1.3 Results 
The Friedman’s test for investigating within-subjects differences of the varied-

performance group compared timing of development milestones (first submission, testing 

threshold, maximum scoring, and final submission), quality of code (correctness and 

coverage), as well as quantity of test code (relative NCLOC). Likewise, we compared the 

same metrics between exclusively A/B and C/D/F groups using the Wilcoxon signed-

rank test. The following subsections describe the findings for each area of analysis, 

before detailing the results of a post-hoc analysis of testing strategy. 

Time of Development Milestones 
A within-subjects comparison reveals that the first submission time for A/B assignments 

(M=62.26, sd=7.29) is earlier (F(1,1)=36.96, p<0.0001) before the deadline than for the 

same students’ C/D/F assignments (M=32.11, sd=58.52) from the varied-performance 

group. Likewise, the first submissions of consistent A/B students (M=68.54, sd=75.08) 

takes place earlier (p<0.001) than that of consistent C/D/F students (M=28.66, sd=51.11) 

according to the Wilcoxon test. 

We compared the time remaining for the final submissions on well- and poor-performing 

assignments. In the within-subjects comparison, well-performing assignments were 

finished (M=28.02 sd=63.73) significantly earlier (F(1,1)=32.56, p<0.0001) than poor-

 
 

Figure 5.2. Distribution and Grouping of First Moment Reaching 85% 

Coverage by Standardized Time Elapsed within Assignment Submissions 
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performing assignments (M=3.88, sd=52.68). Consistent A/B students submitted their 

final submissions (M=30.72, sd=64.15) with significantly more time remaining 

(p<0.0001) than C/D/F students (M=6.74, sd=46.49). 

To compare the timing of the testing threshold and maximum scoring milestones, we 

examined their relative worktime, or the percentage of the time elapsed between first and 

last submissions. Varied-performing students reached the testing threshold earlier in 

development (F(1,1)=1.26, p<0.01) on poor-performing assignments (M=0.55, sd=0.45) 

than on well-performing assignments (M=0.65, sd=0.43). The C/D/F students who 

attained the testing threshold (M=0.40, sd=0.39) did so earlier in their development 

process (p<0.0001) than A/B students (M=0.53, sd=0.37). However, interpretations of 

testing threshold relative worktime comparisons should use particular caution because 

these tests exclude all assignments that failed to achieve 85% coverage. 

Varied-performing students reached their maximum scoring milestone earlier 

(F(1,1)=55.78, p<0.0001) within their development on poor-performing assignments 

(M=0.55, sd= 0.45) than on well-performing assignments (M=0.65, sd=0.43). 

Correspondingly, A/B students reached their maximum scoring milestone (M=0.70, 

sd=0.40) later (p<0.0001) than C/D/F students (M=0.41, sd=0.45).  

Both of these last findings may contradict expectations: poorer assignments reached the 

testing threshold milestone earlier in development than better assignments, and poorer 

assignments reached the maximum scoring milestone earlier in development as well. 

Since testing early is supposed to benefit students, one would hypothesize that better 

scoring assignments would be associated with demonstrating substantial correctness and 

test coverage earlier during development compared to weaker assignments. 

Consequently, we investigated this issue further in Testing Strategies, later in this 

section. 

Lastly, with concern to time spent in development, we examined the overall time elapsed 

from first to last submission for each assignment. The within-subjects comparison of 

varied-performing students shows that the amount of time a student spent (in hours) on 

his or her well-performing assignments (M=27.31, sd=43.22) was slightly less than 

(F(1,1)=7.51, p<0.01) the time spent by the same individual on poor-performing 

assignments (M=30.66, sd=41.61). However, students who consistently achieved A/B 

scores (M=37.82, sd=48.71) spent nearly twice as much time (p<0.001) as students who 

consistently achieved C/D/F scores (M=21.92, sd=34.94). 

Code Quality and Test Quality 
We measured quality of solution code by tracking correctness during development. 

Meanwhile, we evaluated quality of testing with testing coverage. Final correctness is 

used to identify assignment groups in the within-subject Friedman’s test and to identify 

student groups for the Wilcoxon between-groups comparison. Therefore, for the final 

submission, we only compared test quality within-subjects and between groups.  

The within-subject comparison of the varied-performance group, demonstrated 

significantly higher coverage (F(1,1)=684.44, p<0.0001) for assignments with high 
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correctness (M=0.94, sd=0.07) than those with low correctness (M=0.75, sd=0.28). In 

other words, when students in the varied group achieved higher test coverage scores, they 

also produced solutions with fewer bugs (Spearman’s  ρ=0.67, p<0.0001).  As expected, 

the A/B students’ final submissions also had significantly (p<0.0001) higher coverage 

(M=0.94, sd=0.06) than those of C/D/F students (M=0.64, sd=0.31). Over the entire 

dataset, there was a strong positive correlation between higher test coverage and higher 

correctness scores (Spearman’s  ρ=0.71, p<0.0001). 

For the first submission, varied-performance students had significantly higher correctness 

(F(1,1)=46.45, p<0.0001) and coverage (F(1,1)=93.88, p<0.0001) on their well-

performing assignments (M=0.45, sd=0.42; M=0.71, sd=0.33) than on poor-performing 

assignments (M=0.14, sd=0.24; M=0.46, sd=0.24, respectively). The between group 

analysis also found that the first submissions for A/B students had higher (p<0.0001) 

correctness (M=0.40, sd=0.34) than on C/D/F student assignments (M=0.08, sd=0.18). 

Furthermore, the A/B’s also had higher (p<0.0001) initial coverage (M=0.68, sd=0.35) 

than the C/D/F group (M=0.49, sd=0.34). 

We also investigated the quality of code at the point of reaching the testing threshold 

milestone. Satisfying our definition for the testing threshold milestone already requires 

that coverage is at least 85%. However, not all assignments achieve this milestone. 

Varied-performance students reach the testing threshold on 63% of their well-performing 

assignments but on only 43% of their poor-performing assignments.  

When considering only those assignments that reach the milestone, a within-subject 

comparison reveals that the solution correctness at the time of the testing threshold 

milestone is significantly higher (F(1,1)=36.51, p<0.0001) on well-performing 

assignments (M=0.74, sd=0.32) than on poor-performing assignments (M=0.42, 

sd=0.26). Similarly, assignments from A/B students achieve the testing threshold 65% of 

the time, while C/D/F students only achieve it 32% of the time. Moreover, A/B 

assignments (M=0.76, sd=0.39) also have higher (p<0.0001) correctness at the testing 

threshold milestone than do C/D/F assignments (M=0.39, sd=0.24). 

Finally, we compared code quality at the time of achieving the highest correctness within 

each assignment. Since we already know by definition that well-performing assignments 

have higher correctness than poor-performing assignments, we only compare test 

coverage at the maximum score milestone. At the time of the maximum score milestone, 

varied-performance students have higher (F(1,1)=542.15, p<0.0001) coverage on well-

performing assignments (M=0.94, sd=0.07) than on poor-performing assignments 

(M=0.71, sd=0.31). Accordingly, assignments from consistent A/B students (M=0.95, 

sd=0.06) have higher (p<0.0001) coverage than those from consistent C/D/F students 

(M=0.61, sd=0.34). It should not be surprising that throughout development, consistent 

A/B students regularly demonstrate better solutions and testing than consistent C/D/F 

students do. However, it is more telling that varied-performance students also 

demonstrate a positive relationship between maintaining good coverage throughout 

development and producing higher-quality results. This within-subject comparison rejects 

the hypothesis that the relationship between high-quality testing and high-quality 

solutions only reflects inherent study/work habits of “good” and “bad” students. 
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Quantity of Code 
In addition to code quality, we are concerned with how much test code students write at 

different stages of development. By comparing the amount of test NCLOC to solution 

NCLOC, we can observe—at any given moment in development—the amount of work 

on testing relative to that of the solution. To inspect this amount of testing throughout 

submissions to Web-CAT, we compared relative NCLOC at the times of: first 

submission, testing threshold milestone (when available), maximum scoring milestone, 

and final submission.  

In within-subject comparisons, the fit for each threshold moment was calculated 

independently since not all assignments reach the testing threshold milestone. On the first 

submission, varied-performance students had significantly higher (F(1,1)=35.25, 

p<0.0001) relative NCLOC (more test code per line of solution code) on well-performing 

assignments (M=0.61, sd=0.41) than on poor-performing assignments (M=0.47, 

sd=0.38).  

Well-performing assignments (M=0.81, sd=0.39) also had significantly higher relative 

NCLOC (F(1,1)=35.81, p<0.0001) at the testing threshold milestone than poor-

performing assignments (M=0.76, sd=0.32). Likewise, well-performing assignments 

(M=0.80, sd=0.38) also had significantly higher relative NCLOC (F(1,1)=109.73, 

p<0.0001) at the maximum scoring milestone than poor-performing assignments 

(M=0.64, sd=0.42). 

However, there is no significant difference (F(1,1)=1.37, p=0.24) in relative NCLOC 

between consistently well-performing assignments (M=0.81, sd=0.38) and consistently 

poor-performing assignments (M=0.76, sd=0.33) at the time of testing threshold 

milestone. Since the milestone requires substantial testing, poor assignments with less 

test code (and that never reach the milestone at all) are excluded, consequently artificially 

inflating the mean. To further support this explanation, within varied-performing 

students, fewer poor-performing assignments (35%) achieved testing threshold than well-

performing assignments (57%).   

Figure 5.3 illustrates the change in relative NCLOC during development for well-

performing and poor-performing assignments of varied-performing students. Both groups 

show a relative increase in testing between first submission and the submission where the 

assignment first achieves 85% coverage. However, the well-performing assignments tend 

to maintain (or slightly increase) amount of test code through the rest of development 

while poor-performing assignments do not. 
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Testing Strategies 
While the majority of analyses in this study support the argument that early, incremental 

testing scaffolds higher-quality tests and solutions, aberrations emerge when inspecting 

relative worktime (between first and last submissions) of the testing threshold milestone. 

These peculiarities are highlighted by the results of a post-hoc Wilcoxon each pairs test 

comparing quantity and quality of code between early, intermediate, late, and neglectful 

testing groups (see: Figure 5.2). To account for chances of type I error with multiple 

comparisons, we used the Bonferroni correction to set a stricter (α=0.008) confidence 

interval for post-hoc tests. 

When comparing the final correctness between each group, early testing (M=0.80, 

sd=0.34) and intermediate testing groups (M=0.87, sd=0.20) performed comparably well 

(p=0.55), but both worse (p<0.001 and p<0.003) than the late testing group (M=0.88, 

sd=0.21). All three of these groups performed better (each p<0.0001) than the neglectful 

group (M=0.65, sd=0.39). For final coverage, the late (M=0.95, sd=0.06) and 

intermediate (M=0.95, sd=0.05) groups scored comparably (p=0.11). While the late 

 
 

Figure 5.3. Relative NCLOC Through Development,  

Grouped by Final Correctness 
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group’s mean coverage is greater than the early group’s (M=0.88, sd=0.24), this 

difference is not significant (p=0.018).  Likewise, there is no significant difference 

(p=0.44) between the intermediate and early groups. All three groups performed better 

(p<0.0001) than the neglectful group (M=0.78, sd=0.25) in terms of final test coverage. 

Similarly, late (M=0.88, sd=0.40) and intermediate (M=0.87, sd=0.42) groups had higher 

(but not significant) final relative NCLOC (p=0.02 and p=0.21) than the early testing 

group (M=0.83, sd=0.44). There was no significant difference between the intermediate 

and late groups (p=0.23). All three groups had higher final relative NCLOC (p<0.0001) 

than the neglectful group (M=0.70, sd=0.42). From these comparisons alone, one might 

conclude that either early testing really is no better than later testing strategies, or that 

there is a previously undetected phenomenon affecting the early testing group scores. 

To investigate the relationship between testing threshold relative worktime—which the 

testing groups are based on—with other timing factors, we performed a Spearman’s 

correlation with: time remaining at the first and last submissions, final time elapsed, and 

maximum scoring relative worktime. Table 5.2 summarizes the correlations with the 

testing threshold relative worktime. Given the moderately positive correlation between 

the relative worktime of the test threshold and maximum score threshold, it is not 

surprising to find that the maximum score milestone also has a bimodal distribution, as 

demonstrated in Figure 5.4 (on the following page). 

 

Table 5.2. Spearman Rho Correlation with  

Testing Threshold Relative Worktime 

 

 
  Testing Threshold Relative 

Worktime (M=0.53, sd=0.39) 

 
M sd 

Spearman 
Correlation (ρ) p 

Time Remaining 
  (1st Submission) 

52.48 70.01 -0.01 0.52 

Relative Worktime  
  (Maximum Scoring Milestone) 

0.62 0.44 0.34 <0.0001 

Time Remaining 
  (Last Submission) 

21.51 61.07 -0.04 0.09 

Time Elapsed 
  (Last Submission) 

30.97 44.33 0.07 <0.01 
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A quarter of relative worktimes for maximum score threshold are 0.0, or the very first 

submissions to Web-CAT. These assignments reflect instances where students never 

improve upon their correctness after their first submission. We will refer to these 

assignments as the complacent group. As one might expect from assignments without 

correctness improvement, these assignments averaged very few submissions (M=4.69, 

sd=6.31), and little time elapsed between first and last submissions (M=11.85, sd=30.83). 

The correctness (M=0.52, sd=0.47) and coverage (M=0.69, sd=0.37) on average are also 

quite poor. However, the wide standard deviations reflect divergent trends within this 

segment. 

Half of the complacent assignments stagnate with either 100% or 0% correctness. The 

25% who began with 0% correctness and never improved reflect students who either 

neglected the effort necessary for the assignment or seem to have given up on it. 

Meanwhile, the 25% of the complacent group who achieved 100% correctness on their 

first submission clearly demonstrated substantial work before submitting to Web-CAT 

and were nearly—if not totally—finished. Unfortunately, the data reflecting these 

assignments do not expose much of their development process.  

Accordingly, with poor granularity of the complacent group’s development process, it 

would not be appropriate to categorize their testing strategies with those assignments with 

finer granularity. For instance, if a student only submits once but achieved at least 85% 

 
 

Figure 5.4. Distribution of Time of Maximum Scoring Milestone,  

by Relative Worktime 
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coverage, does that indicate early testing? Likewise, imagine a student facing an 

impending deadline and submitting four times over the span of an hour. Is there a 

discernible difference in testing strategies between taking 10 and 60 minutes to achieve 

85% coverage? Even in non-complacent assignments with few submissions or short 

duration, we can compare development patterns through differences in changes to their 

work. However, complacent assignments suffer from a lack of both granularity and 

change. 

These complacent assignments appear to reflect at least two distinct habits. In some 

situations, students complete the vast majority of work on well-performing assignments 

before submitting. In other situations, students seem to give up shortly after their first 

submission. It is unlikely that testing strategies influenced the outcomes of those 

complacent with poor correctness. Instead, their outcomes likely reflect personal 

characteristics or study habits such as lack of motivation, poor time management, or 

inadequate preparation. Meanwhile, it would be intriguing to investigate the development 

habits of those in the complacent group who started with perfect correctness. However, 

since our data are limited to their submissions to Web-CAT that began at the tail end of 

the development process, it would not be fair to categorize their testing habits as either 

early or late with so little information. 

If we prune complacent assignments from the dataset and repeat the Wilcoxon test, we 

observe a notable change in results. Now, when comparing the final correctness, the early 

group (M=0.90, sd=0.18) performs comparably (p=0.48) to the late (M=0.89, sd=0.19) 

group, better (p<0.001) than the intermediate group (M=0.87, sd=0.19), and still 

considerably better (p<0.0001) than the neglectful group (M=0.79, sd=0.26). However, 

testing quality effects are even more salient.  

When comparing the final coverage of the pruned dataset, the early group (M=0.96, 

sd=0.08) performs significantly better than the intermediate (M=0.95, sd=0.05, p<0.0001) 

and late (M=0.95, sd=0.06, p<0.001) groups. There is no significant difference (p=0.43) 

between coverage of intermediate and late groups. All three groups produced 

significantly higher coverage (p<0.0001) than the neglectful group (M=0.84, sd=0.16).  

The final relative NCLOC for early (M=0.92, sd=0.42) is insignificantly higher than 

intermediate (M=0.86, sd=0.42, p=0.02), and late (M=0.87, sd=0.42, p=0.17) groups. All 

three groups produce higher (p<0.0001) relative NCLOC than the neglectful group 

(M=0.75, sd=0.42).  

With these improved groupings, Figure 5.5 illustrates the timing and coverage at each 

milestone for each group (excluding pruned submissions). The milestones follow, in 

order: first submission, testing threshold milestone, maximum scoring milestone, and 

final submission. Note that the neglectful group, by definition, does not have a second 

(testing threshold) milestone. 
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Finally, to investigate the relationship between testing strategy and outcome, independent 

of time management behaviors, we performed post-hoc analysis excluding submissions 

with poor habits. Specifically, we included only assignments with the following 

characteristics: one (or more) submissions preceding the deadline by at least 48 hours; 

multiple submissions spanning development over 24 hours; and final submission before 

the deadline. This pruned dataset included 2,727 assignments from 790 unique students.  

Using the Wilcoxon test on each pair of groups (early, intermediate, late, neglectful), we 

found early-tested assignments (M=0.92, sd=0.17) had higher correctness (p<0.01) than 

intermediate-tested assignments (M=0.90, sd=0.15) approaching significance (α=0.008). 

The intermediate group also approached higher (p=0.09) correctness than the late group 

(M=0.89, sd=0.15). Accordingly, the aforementioned groups also had higher correctness 

(p<0.0001) than the neglectful group (M=0.76, sd=0.32). 

The final test coverage comparison between groups revealed similar results. The early 

group (M=0.96, sd=0.08) had significantly higher coverage (p<0.0001) than both the 

intermediate (M=0.94, sd=0.05) and late (M=0.94, sd=0.05) groups. The intermediate and 

 
 

Figure 5.5 Relative Worktime of Milestone Submissions,  

Grouped by Test Behavior 
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late groups had no significant difference in coverage (p=0.64). Finally, the intermediate 

and late groups also had significantly higher coverage (p<0.0001) than the neglectful 

group (M=0.84, sd=0.15). 

Finally, we reviewed students’ testing behaviors across assignments. Approximately 18% 

of students demonstrated neglectful testing practices on all of their assignments. 

Meanwhile, 2% consistently tested late, 3% consistently tested early, and 1% consistently 

tested in-between (“intermediate”). The remaining 76% of students followed different 

testing behaviors on different projects. 

5.1.4 Discussion 
Results showing strong positive correlations between early test quality and quantity and 

the consequential assignment outcomes corroborate with previous studies suggesting 

benefits of test-first and test-early strategies [BUM+2002][BE2012i][DJS2008]. 

However, we focused on within-subject comparisons of students who performed well on 

some assignments and poorly on others. By contrasting their testing behaviors on well-

performing assignments with those on poorer-performances, we control for students’ 

personal traits and isolate the impact of differences of behaviors.  

We characterized divergent testing strategies based on analysis of how early within an 

assignment’s development a student first achieves substantial (>85%) test coverage of 

their code. By considering timing relative to individuals’ development time—opposed to 

in absolute time before the deadline—we were able to compare testing strategies 

independently of general time management skills. Furthermore, to investigate the effects 

of testing independently of time management behaviors, we compared a subset of only 

assignments that started early, continued to develop for substantial time, and submitted 

their final work on time. 

We found that on assignments where students reached this testing threshold milestone 

early in their submissions (<20% within relative worktime), they usually produced higher 

quality code and tests than those who demonstrated later testing strategies. Surprisingly, 

we also found that assignments achieving the testing threshold late (>80% within relative 

worktime) produced higher quality code and tests than those who did so in the middle of 

their development. 

This study benefits from the advantage of observing students’ testing behaviors with finer 

granularity than reviewing a solitary assignment deliverable. However, we also identify 

small segments of submission behaviors with inadequate detail to infer testing strategies. 

Approximately one-in-every-eight varied-performance assignments had very few 

submissions with no measurable progress from their first submission. For the purpose of 

this study, these complacent assignments lacked enough detail to categorize their testing 

strategies confidently. Consequently, we excluded these outliers as we found that they 

were unduly influencing our statistical results. 

However, there is potential value in learning more about these assignments with 

unknown testing and development strategies. Extending the snapshots of students’ work 

into earlier stages of development (i.e. before first submissions) will promote more detail 
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in models of testing behavior. Therefore, we hope this study represents a step in the 

progression of techniques and tools that enable increasing granularity in observing 

software development behaviors. 

5.2 Scaffolding Software Testing 
Computer science curricula have begun to add software testing requirements to 

programming assignments and automated grading systems such as Web-CAT 

[Edwa2013] and Marmoset [Spac2013] have incorporated features to evaluate the quality 

of students’ tests. In addition, these grading systems provide feedback to students to 

identify shortcomings in both solution correctness and thoroughness of testing. However, 

concerns arise about whether automated feedback systems empower students with 

effective software testing practices. In particular, multiple instructors have independently 

expressed worries—based on their anecdotal observations—that their students rely upon 

Web-CAT’s automated testing feedback to supplant the need for thorough testing. 

Since the point of testing is to verify that software behaves as expected, the practice of 

writing tests should involve reflecting over a variety of different test cases and 

confirming that each produces the expected outcome. In performing due diligence in 

testing, a student should consider not only the mainstream cases, but also which unusual 

cases may cause bugs, or unexpected outcomes. To the contrary, we have found that 

students write “happy path” tests—only those mainstream cases unlikely to cause 

unexpected bugs [ESB2014]. 

After students submit their work to Web-CAT, they receive feedback on the correctness 

of their solutions—as determined by a set of obscured reference tests provided by the 

instructor—as well as measurements of how much of their own code they have exercised 

with their own tests. In addition, failed reference test cases generate hints that instructors 

use to give students general direction in identifying what is malfunctioning without 

revealing the specific details of the reference test. Web-CAT’s correctness score provides 

students with confirmation of how well their solution performs according to the project 

specifications. While the hints do not necessarily indicate exactly which test cases are not 

working, they also provide students with insight into which features they need to fix in 

their solution code. Both types of feedback may be well intended to help students make 

progress on their programming assignments; however, they also relieve at least some of 

the burden of software testing. 

Ideally, students would test their own code thoroughly enough that without any feedback 

from the instructor, they would have strong confidence that their code behaves correctly 

by its performance against their tests alone. In non-academic settings, software 

developers do not usually have the benefit of an instructor’s thorough checks to make 

sure their software is sound and robust. Instead, they would have to rely on their own 

estimates of the code quality to determine if it is ready to deploy. Nevertheless, it may be 

unrealistic to expect students to know how to test effectively without assistance.  

Consequently, programming courses should find a compromise between alleviating the 

burden of quality assurance from the students and demanding professional-level testing 

proficiency immediately. In this section, we reconsider students’ interaction with 
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automated grading systems. We describe a model for scaffolding feedback in Web-CAT 

to encouraging students to reflect over their code and concentrate on writing effective 

software tests to reveal bugs instead of relying on external sources. 

5.2.1 Background 
When students submit programming assignments to Web-CAT, test coverage estimates 

the quality of their tests. Traditionally, Web-CAT evaluates the percentage of methods, 

lines of code, and conditions within a student’s solution code are executed by her unit 

tests. This combination of method, line, and condition coverage provides a general 

perspective of the breadth of code exercised by the student’s tests. However, even 100% 

code coverage does not necessarily indicate that tests have thoroughly checked the 

program’s behavior. For example, consider the following code segment: 

if ( a && (b || c) ) 
{  
    return true; 
} 
else 
{ 
    return false; 
} 

 

Figure 5.6. Example of IF-ELSE Control with a Compound Condition 

The above code can achieve full coverage in two test cases: one where the variables a b 

and c are true (which returns true) and one where they are all false (which returns false). 

With these two test cases, we have executed each line in the code and have executed both 

outcomes of the if condition (true and false). However, with these tests, we have not 

considered other cases with different combinations of values for the variables. While the 

compound condition has been both true and false, variations of the atomic decisions are 

not thoroughly tested. For example, if a and b are true but c is false, does the code’s 

outcome (true) match the expected behavior of the program? 

There are alternate approaches for estimating test quality beyond traditional coverage 

measurements. Another study compared coverage to two other techniques--mutation 

testing and all-pairs testing—to determine how well they predict bugs in students’ actual 

code [ES2014]. Mutation testing involves making multiple versions of a student’s source 

code with minor modifications—each called a “mutant”—and identifying whether the 

student’s tests “kill” mutants by producing different outcomes from the test with its 

original code. Meanwhile, all-pairs testing involves running a student’s tests against all 

other students’ implementations of the same assignment and measures how many bugs it 

identifies. The study found that all-pairs testing was most effective at determining a test 

suite’s ability to identify bugs while mutation testing was no better than coverage at 

doing so. 

However, all-pairs testing has caveats that limit the practicality of using it in automated 

grading systems like Web-CAT. First, as the number of students in the class (and the 

number of tests they write) grows the computational expense of running tests against all 
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other students’ code increases exponentially. Perhaps more poignantly, Web-CAT allows 

students to submit their assignment multiple times throughout development so each 

student’s code and all-pairs score will change over time (until submissions are no longer 

accepted). Consequently, the first students to submit their code would have less 

comprehensive all-pairs analysis and the results may change as others submit their work. 

Modified Condition / Decision Coverage (MC/DC) is another approach for measuring 

comprehensiveness of software tests [CM1994]. Unlike conventional coverage where a 

decision only requires an overall true and false evaluation, MC/DC requires showing that 

each atomic condition affects a "decision's outcome by varying just that condition while 

holding fixed all other possible conditions" [Chile2001].  As one form of MC/DC, 

masking MC/DC takes advantage of setting one operand of an operator so that the other 

operand cannot affect the value of the operator. Reconsidering the example in Figure 5.6, 

the operand b can be masked by holding c true so that it will evaluate as true regardless 

of b's value; likewise, a can be masked by holding (b || c) false so that the expression 

will evaluate to false regardless of a's value. Because masking MC/DC examines 

conditions with more detail, it subsumes Web-CAT’s approach of measuring coverage 

for each method, line, and control decision. 

In addition to challenges of measuring the thoroughness of students’ tests, automated 

grading systems need to encourage students to test their code more thoroughly rather than 

depend on automated feedback to tell them whether their code works. Instead, it should 

provoke students to reflect, “What other test cases might possibly break my code?” 

However, as alluded to in our previous study, 4.2 A Formative Study of Influences on 

Testing Behaviors, students’ responses to Web-CAT’s feedback concentrate 

predominantly on fixing errors in their code to improve their correctness score. While 

students also aim to earn full credit for testing by obtaining 100% coverage, their 

approach does not reflect the mentality of trying to expose weaknesses in their code. 

Rather, their testing behaviors more closely demonstrate a desire to extend the least 

amount of work to obtain 100% coverage, a relatively superficial objective for testing. 

Nevertheless, students’ responses to Web-CAT’s feedback is understandable since they 

are driven to achieve good grades (which 100% coverage allows), and the feedback 

already provides some insight into how acceptable their code is without having to test it 

sufficiently themselves. Our previous attempts with adaptive feedback with overt 

encouragement to test (see Chapter 4, Interventions for Reinforcing Methods) had no 

long-term impacts on their testing behaviors. However, the adaptive feedback 

interventions supplemented other feedback that still gave students insight into the quality 

of their code, perhaps undermining the efforts to encourage testing. Consequently, we 

designed a model for scaffolding feedback that still provides students with help on 

improving their code, but with a strategic approach emphasizing testing. 
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5.2.2 Method 

A Framework for Scaffolding Testing 
Previous approaches considered overall coverage of the student’s entire programming 

project. Of course, students’ projects usually include many methods and often even 

multiple classes. Consider a situation where a student submits a project that is not 

behaving perfectly (according to the instructor’s specifications) and has some (but not 

exhaustive) testing. Web-CAT detects some bugs in the student’s code from some of the 

instructor’s tests failing and gathers the hints associated with each failed test. For one 

feature of the project, the student thoroughly tested her code but the feature was not 

implemented precisely to the instructor’s specifications: the text output in her 

implementation uses commas to separate values but the instructor expected line breaks 

instead. The problem with this feature is not one caused by a lack of testing, but rather by 

a misunderstanding of the requirements. It is unlikely that more testing will expose the 

problem and without some insight from the hints, it may be frustrating to overcome this 

relatively superficial bug. 

However, in the same submission to Web-CAT, the student may have another feature that 

is incorrectly implemented but has not discovered the problem because she has not tested 

that feature as thoroughly. Unlike the previous example, revealing a hint to correct this 

bug would be inappropriate because the student should first try to reflect over what test 

cases she neglected in her test suite. Nevertheless, by only considering the coverage of 

the entire project, the automated grader cannot determine which feature has been 

thoroughly tested or which hints are appropriate to show. 

Consequently, in order to choose appropriate guidance for students, automated feedback 

must first identify testing quality feature-by-feature. To do so, we developed a custom 

runner for JaCoCo [Jaco2014]—an open source coverage tool for Java—that produced a 

coverage report for each instructor reference test independently. After identifying which 

reference tests fail against a student’s submission, the system then reviews the report for 

each test and identifies which method(s) within which class(es) of the student’s code the 

test executes. As a result, the system can associate failed tests with particular features 

within the student’s submission. While these features cannot always be localized to a 

single method, they narrow the scope considerably because unit tests by definition 

concentrate on small portions of code. 

A reference test suite may include many test cases for a single feature and, as a result, 

create duplicate hints and execute the same methods in the student’s code. As Web-CAT 

traditionally eliminates redundant hints, our system records the number of times a hint 

occurs for a single submission and considers it one unique hint. After recording the test 

results, for each unique hint, it determines whether the student has tested the feature 

associated with that hint enough to warrant revealing the hint. To do so, the system 

calculates the masking MC/DC of the student’s own tests against the method(s) 

associated with that hint.  

If the student has not sufficiently tested the atomic decisions within the methods’ control 

structures, the system will withhold the hint and instead direct the student to the 
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method(s) that need more testing. However, if masking MC/DC is fully satisfied on each 

of the methods associated with the reference test failure, the system reveals the hint. 

Accordingly, this framework requires students to reflect over each feature of their work 

and test it thoroughly before receiving hints. In that manner, students cannot rely upon 

hints to supplant the burden of testing. 

 

Evaluation of Existing Technology 
The aforementioned framework emphasizes offering hints only on features of the 

student’s code that have been adequately tested. The precision of this feature-by-feature 

feedback would be demonstrated by a lack of both false positives and false negatives in 

providing hints. A false positive occurs when a hint is provided to a student when the 

feature it tests has not been tested well by the student. Meanwhile, a false negative occurs 

when a student has sufficiently tested a feature but does not receive a hint generated by a 

reference test that failed the same feature. To compare the framework’s approach to hint 

precision to existing approaches in automated testing, we empirically tested the 

occurrences of false positives and false negatives using Web-CAT’s traditional hint 

mechanism. 

Web-CAT allows instructors to customize how many hints students receive for any given 

assignment submission. However, its default setting is to show a maximum of three hints, 

where hints with multiple occurrences (multiple failed reference tests generating the same 

hint) are given precedence. If additional hints are generated by failed tests, they are 

obscured until later submissions resolve the bugs responsible for the revealed hints. 

Consequently, hints shown may include those generated by reference tests that fail on 

features that the student has not tested (a false positive). Likewise, if a student has tested 

a feature well but a reference test’s hint is not within the top three hints, this represents a 

false negative. Since traditional automated graders do not follow our feature-by-feature 

scaffolding framework, we hypothesized that Web-CAT does not discriminate between 

earned (true positives) and unearned hints (false positives) any better than it discriminates 

obscuring unearned hints (true negatives) from earned hints (false negatives). 

To test our hypothesis, we analyzed existing student submissions to Web-CAT’s 

traditional automated feedback system. Using the procedures described in the test 

scaffolding framework in this section, we performed post-hoc analysis of which features 

each reference test exercised, and whether the student’s earned each hint (both revealed 

and withheld) according to masking MC/DC. The student submissions were from a 

programming assignment from the Fall 2011 term of a CS2 course that involved students 

implementing (and testing) two queue data structures: one as a linked structure and the 

other delegating an array. We previously collected consent from students to analyze the 

results of this assignment. After excluding submissions from students who chose not to 

consent and removing errant submissions (such as non-compiling code), we analyzed 

2,083 submissions from 72 individual students. 

Students averaged submitting to Web-CAT approximately 29 times (M=28.93, sd=24.32) 

each. For each failed test, we evaluated the masking MC/DC score for the methods it 

exercised and recorded whether it earned the hint with complete masking MC/DC on 
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each method. After analyzing each unique hint generated for a submission, we also 

recorded how many unique methods in the student’s code needed improved MC/DC to 

earn all hints. On average, each submission required additional testing on 3.09 (sd=1.74) 

unique methods, or 8.68% (sd=5.16%) of its solution methods; Figure 5.7 shows the 

distribution across all submissions. 

 

Figure 5.7. Distribution and Box-plot of Methods Requiring More Testing 

 

Meanwhile, the failed reference tests produced an average of 22.24 (sd=15.99) unique 

hints per submission. Figures 5.8 and 5.9 shows the distribution of earned (full MC/DC 

for applicable methods) and unearned hints (incomplete MC/DC for applicable methods) 

that were revealed and obscured, respectively. 

 

We used the Shapiro-Wilk test to check for normality of these distributions. The test 

rejected the null hypothesis (that the data are normally distributed) for both the unique 

methods (p<.01) and unique hints (p<.01). Consequently, to test our hypotheses by 

comparing the incidents of false positives and true positives for revealed hints to false 

negatives to true negatives of withheld hints, we used the Friedman’s test for within-

subject comparisons of non-parametric distributions. Furthermore, we performed 

Wilcoxon signed-rank test to compare the overall percentage of hints earned of those 

revealed to that of those withheld. 
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Figure 5.8. Distribution of Revealed Hints, Earned Versus Unearned 

 

 

 

 
Figure 5.9. Distribution of Obscured Hints, Earned Versus Unearned 
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5.2.3 Results 
To test our hypothesis, we performed a Friedman test comparing the rate of earned-to-

unearned hints between those revealed and withheld, when averaged across multiple 

submissions within-subject. The test found that there was no significant difference 

(F(2,1)=-0.67, p=0.49) between the rate at which revealed hints were earned (M=0.20, 

sd=0.09) and withheld hints were earned (M=0.20, sd=0.09). 

We also compared the overall rates of earned hints—considering each submission 

independent of who submitted it—using a Wilcoxon signed-rank test and found that 

withheld hints had a higher rate (p<.0001) of earned hints (M=0.21, sd=0.30) than did 

revealed hints (M=0.16, sd=0.32). Both tests reject the null hypothesis that revealed hints 

have a higher rate of earned-to-unearned hints than withheld hints. 

 

5.2.4 Discussion 
The post-hoc analysis of hints that Web-CAT natively reveal and obscure supported our 

hypothesis that the automated feedback often results in both false positives and false 

negatives. False positives inadvertently relieve some of the burden of testing thoroughly 

by providing insight into failing tests for features that have not been thoroughly tested. In 

fact, false positives (revealing unearned hints) were roughly four times more common 

than true positives (earned hints revealed). Withheld hints had comparable rate of earn-

to-unearned hints, resulting in roughly half of earned hints being withheld. With such 

high false positive and false negative rates, it should not be surprising that the current hint 

mechanism does not promote students to practice reflective testing before trial-and-error 

in response to failed hints. 

One might consider configuring Web-CAT to remove the limitation to a maximum of 

three hints per submission. Doing so would eliminate all false negatives. However, the 

false positive rate would continue to overwhelm the number of earned hints and continue 

to undermine attempts to encourage students to rely on their own testing instead of using 

Web-CAT as a crutch. While the interventions described in Chapter 4 avoid static 

restrictions on how many tests Web-CAT reveals, their designs do not account for 

precision of hints served on a feature-by-feature basis. Consequently, there is no reason 

to believe that they would have any better success at preventing false positives and false 

negatives than the default Web-CAT settings did. 

To the contrary, our proposed framework offers a unique approach to scaffolding 

feedback to guide students to revisit their extent of their testing without depending on 

Web-CAT to determine behavioral acceptability for them. For example, without any test 

cases, our framework could first indicate only that features in the student’s assignment 

have not been tested—no indication of the program’s correctness or results from 

reference tests. Then, as the student adds test cases and resubmits, the feedback scaffold 

would give more direction by identifying features that are not working properly and need 

more thorough testing. Finally, when the student has thoroughly tested a feature but has 

not resolved its disparity from the project specifications, the framework would provide 

detailed hints about why the feature fails reference tests. 



www.manaraa.com

84 

 

This framework’s approach to scaffolding feedback is modeled after Vygotsky’s Zone of 

Proximal Development [Vygo1978]. Before a student has written tests, her immediate 

need in effective software development and problem solving is to reflect over her 

solution and consider its possible flaws. As she continues to reflect and test thoroughly, 

she will gradually approach a mastery of the problem where she can use hints to reconcile 

differences between her implementation and the expected solution. 

In addition, it is worth acknowledging that there is no de facto standard for measuring test 

effectiveness. Therefore, while our use of masking MC/DC in our application of the 

framework should provide more accurate estimations of test thoroughness than 

conventional coverage, the framework is not explicitly tied to masking MC/DC. As we 

continue to study methods of evaluating student testing on programming assignments, 

other measurements could replace masking MC/DC without upsetting the framework’s 

infrastructure. In conclusion, we hope to evaluate how interaction with our framework 

influences student testing behaviors while continuing to investigate options for assessing 

test quality. 
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Chapter 6 

Conclusion 
 

 

There is growing pressure to prepare students as proficient software testers. This 

dissertation concentrates on the contemporary software development process of test-

driven development (TDD), which incorporates a test-first approach to incrementally 

producing code with confidence that adheres to the behaviors as specified by its 

corresponding unit tests. While TDD’s popularity in industry makes it a practical method 

to learn in computer science curricula, some programmers hesitate to adopt the technique 

and avoid testing thoroughly and incrementally. Through six studies, we described 

comprehensive investigations into influences on novices’ adoption of incremental testing 

as well as empirical analysis of the effectiveness of incremental testing and educational 

interventions to help develop good testing practices. Specifically, we addressed the 

following three objectives: 

1. Describe student affect (emotions and valence) and opinions with regard to 

their influence on adherence to test-driven development (TDD). 

Because TDD involves a stark contrast to novice programmers’ “code now, test later” 

mentality, they often have poor opinions of test-first and incremental testing strategies. 

Previous research provided general opinions of TDD, but did not dissect programmers' 

opinions on the two main components of TDD: testing first, and testing in small 

increments. As we described in Chapter 3, while early testing behaviors showed modest 

improvements in code and testing quality, students resisted strict TDD. Our surveys 

revealed that while they generally accepted principles of unit testing, their prevailing 

opinion was that testing first did not help. Consequently, we found that students did not 

entirely object to TDD, but primarily to its test-first approach. The surveys also revealed 

that students did not typically test incrementally; this discovery exposed a need for 

educational intervention that motivated our second objective: 

 

2. Design an eLearning intervention for encouraging TDD adherence and 

evaluate its impact on student affect, behaviors, and outcomes. 

Detecting incremental testing requires students' software development process to be 

observed. However, it is impractical to expect instructors to watch all their students while 

they work on individual assignments. In addition, assessment for programming 

assignments traditionally focuses on the product of students' work, which does not 

consider the process they followed. Consequently, we leveraged Web-CAT—an 

automated grading system—to collect snapshots of students' coding while they worked 

on programming assignments and evaluate their software development processes.  
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Since students did not readily incorporate testing throughout their development 

processes, we developed an adaptive system to encourage them to begin testing earlier. 

The adaptive feedback systems described in Chapter 4 introduces novel approaches to 

identifying testing behaviors while students are working on programming assignments. 

Experimentation with rewards and reinforcement techniques proved unsuccessful in 

affecting long-term behavioral change. However, influencing changes in complex 

behaviors such as those involved in software development and problem solving is an 

ambitious aspiration.  

Nevertheless, our experiments with adaptive feedback showed potential for using 

concrete testing goals to complement reward systems that can promote short-term 

behavioral change. Meanwhile, qualitative evaluation of students’ programming 

strategies and interaction with automated grading systems helped reframe the role that 

eLearning systems take during programming assignments. To supplement these findings 

with quantitative evaluation of students' behaviors, we focused on our third objective: 

 

3. Characterize software testing strategies demonstrated by students and 

evaluate their consequential outcomes. 

Finally, Chapter 5 of the dissertation evaluated the impact of when students test on the 

quality of the code they produce. By analyzing a comprehensive, five-year data set of 

students’ programming assignments, we found that even when controlling for external 

variables—such as procrastination and varying learner diligence—students who tested 

thoroughly earlier in their work produced higher-quality code and tests. Consequently, 

we synthesized our findings and developed a framework for scaffolding feedback to 

guide students through effective, incremental testing strategies. By identifying individual 

features within a student's solution, our framework uses higher testing standards to detect 

whether each feature needs more testing and guides feedback accordingly. 

Future Work 
Our studies used student-initiated submissions to an automated grading system to capture 

snapshots of their work. While this approach department from traditional product-

oriented assessment and introduced novel process-oriented analysis, there were two 

principal limiting factors. First, the submissions could not indicate whether students 

followed TDD's "test-first" approach. Since coverage scores were dependent on students 

submitting both solution and test code together, we do not know the order in which they 

were developed: "test a little, code a little," or vice-versa. Consequently, our quantitative 

analysis concentrated on incremental testing and relied on students to report their 

adherence to "test-first" in surveys. 

Secondly, students typically did not submit their work to the automated grader until they 

had written at least half of the code they would ultimately write for the assignment. As a 

result, snapshots of students' code lacks data from the beginning stages of their work. 

Since TDD advocates testing throughout development and our studies suggest testing 

early produces better code, it would be advantageous to provide educational interventions 

to promote testing as students begin their assignments. Furthermore, it may be more 

difficult for students to change their testing behaviors after they have completed a 
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substantial amount of the development. Instead, early interventions may be more 

effective in promoting good testing habits. 

As our process-oriented approach improved upon traditional product-oriented 

assessment, we hope to continue to increase the granularity of data representing students' 

development. By integrating test evaluation and feedback into students' integrated 

development environments (IDE), we can address both of the limiting factors of this 

research. Continuous test evaluation within an IDE would gather whether students' 

develop tests or their solution code first. In addition, integrating educational interventions 

within a student's IDE provides the opportunity for adaptive feedback to promote good 

testing practices before students adopt bad habits. Feedback inside an IDE may apply our 

findings, particularly by taking advantage of salient goals and self-monitoring to 

empower students to monitor and improve their testing behaviors.  

The automated grading system used for the studies in this dissertation provided feedback 

only upon students' request (by submitting their work). If adaptive feedback is provided 

persistently within the IDE instead, other questions arise. For instance, how can feedback 

provide useful information and encouragement without disrupting students or 

overburdening their cognitive load while programming? Likewise, how do reinforcement 

methods such as salient goals and rewards affect student behavior when provided 

immediately? Finally, how does persistent, immediate feedback affect students' anxiety 

on programming assignments? 

In addition to improving the granularity of data collection for observing software 

development processes, there is a need to improve techniques for evaluating software test 

quality. As we described in Section 5.2, Modified Condition/Decision Coverage provides 

more rigorous test evaluation than traditional coverage metrics. However, even high 

masking MC/DC scores do not necessarily indicate that tests are comprehensive and 

assertions are robust. While our study [ESB2014] found that mutation analysis was no 

more effective in identifying faults in students' code than masking MC/DC, it is 

worthwhile to continue studying mutation analysis because it provides better insight into 

test assertion quality than coverage and masking MC/DC. Consequently, a combination 

of both (and/or other) techniques may provide better evaluation of students' tests. 

Finally, our investigation of adaptive feedback techniques may have practical application 

beyond incremental testing reinforcement. When teaching other software engineering 

practices, our tools and findings can offer guidance on reinforcing other target behaviors 

as well. In addition, as we continue to study students' proficiency at testing, it is 

becoming increasingly evident that students need more practice at writing software tests 

with a critical "how can I break this code?" mentality. Consequently, there is a unique 

opportunity to leverage what we have learned about adaptive feedback and evaluation of 

test quality to build an eLearning drill-and-practice system that scaffolds students' 

mastery of testing on small exercises. 
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Appendix A: TDD Affect and Anxiety Survey 
This voluntary survey includes questions designed to gauge your attitudes towards 

computers. We will use the combined information to help understand how students view 

computers. The results will be used for research purposes and course improvement. 

Please complete all items, even if you feel that some are redundant. This may require 15-

20 minutes of your time. 

Usually it is best to respond with your first impression, without giving a question much 

thought. Your answers will remain confidential, and will not affect your grade in any 

way. 

Your responses (without your name, of course--your identity is always strictly 

confidential) will be made available for use by other education researchers outside the 

course who are conducting studies on the learning of computer programming. 

If you are a minor (under 18 years old), please skip this survey. 

Are you majoring in Computer Science? 

Yes    No    

 

Before enrolling in this course, had you previously used Web-CAT? 

Yes    No    

Before enrolling in this course, had you previously written test code? 

Yes    No    

Before enrolling in this course, had you previously followed TestDriven Development 

(TDD)? 

Yes    No  

Rate each item individually on the 5-point scale from 

1 (Very Unimportant) to 5 (Very Important) 

on how important the skill is in Computer Science. 

 

Time management 

1    2    3    4    5     

 

Problem solving 

1    2    3    4    5  

 

Attention to detail 

1    2    3    4    5  

Writing solution code 

1    2    3    4    5  

 

Writing test code 

1    2    3    4    5  

 

 

Rate each item individually on the 5-point scale  

from 1 (Very Poor) to 5 (Very Good)  

on how strong you are in the skill. 
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Time management 

1    2    3    4    5  

 

Problem solving 

1    2    3    4    5  

 

Attention to detail 

1    2    3    4    5  

 

Writing solution code 

1    2    3    4    5  

 

Writing test code 

1    2    3    4    5  

 

 

Rate each item individually on the 5-point scale  

from 1 (Very Harmful) to 5 (Very Helpful)  

on the impact of the following behaviors have on developing programs. 

 

Beginning work as soon as it is assigned 

1    2    3    4    5     

 

Beginning work near its deadline 

1    2    3    4    5  

 

Developing thorough test code 

1    2    3    4    5  

 

Developing code and corresponding tests in small units at a time 

1    2    3    4    5  

 

Developing code and corresponding tests in large portions at a time 

1    2    3    4    5  

 

Developing tests before writing solution code 

1    2    3    4    5  

 

Developing tests after writing solution code 

1    2    3    4    5  

 

 

Rate each item individually on the 5-point scale  

from 1 (Very Rarely) to 5 (Very Often)  

on how often you practice the behavior. 
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Beginning work as soon as it is assigned 

1    2    3    4    5  

 

Beginning work near its deadline 

1    2    3    4    5  

 

Developing thorough test code 

1    2    3    4    5  

 

Developing code and corresponding tests in small units at a time 

1    2    3    4    5  

 

Developing code and corresponding tests in large portions at a time 

1    2    3    4    5  

 

Developing tests before writing solution code  

1    2    3    4    5  

 

Developing tests after writing solution code 

1    2    3    4    5  

 

 

Rate each item individually on the 5-point scale  

from 1 (Strongly Disagree) to 5 (Strongly Agree)  

based on your experience with test-driven development (TDD) 

by incrementally developing tests and then solution code one unit at a time. 

 

I consistently followed TDD in my programming projects during this  

course 

1    2    3    4    5  

 

TDD helped me write better test code 

1    2    3    4    5  

 

 

TDD helped me write better solution code 

1    2    3    4    5  

 

TDD helped me better design my programs 

1    2    3    4    5  

 

In the future, I will choose to follow TDD when developing programs  

outside of this course 

1    2    3    4    5  
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Rate each item individually on the 5-point scale  

from 1 (Strongly Disagree) to 5 (Strongly Agree)  

based on your experience with Web-CAT automated results 

(NOT TA/instructor feedback). 

 

Web-CAT helped me improve writing test code 

1    2    3    4    5  

 

Web-CAT helped me improve writing solution code 

1    2    3    4    5  

 

Web-CAT helped me improve designing my programs  

1    2    3    4    5  

 

Web-CAT helped me follow test-driven development 

1    2    3    4    5  

 

Web-CAT helped improve my time management 

1    2    3    4    5  

 

Web-CAT helped improve my attention to detail 

1    2    3    4    5  

 

 

Rate each item individually on the 5-point scale  

from 1 (Not at all characteristic or true of me) to  

5 (Extremely characteristic or true of me)  

on how well they describe you. 

 

I worry about what people will think of me even when I know it  

doesn’t make any difference 

1    2    3    4    5  

 

I am frequently afraid of other people noticing my shortcomings 

1    2    3    4    5  

 

I am afraid that others will not approve of me 

1    2    3    4    5  

 

I am afraid that people will find fault with me 

1    2    3    4    5  

 

When I am talking to someone, I worry about what they may be  

thinking about me 

1    2    3    4    5  
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I am usually worried about what kind of impression I make 

1    2    3    4    5  

 

Sometimes I think I am too concerned with what other people think  

of me 

1    2    3    4    5     

 

I often worry that I will say or do the wrong things 

1    2    3    4    5  

 

 

Rate each item individually on the 5-point scale  

from 1 (Not at all or never true) to 5 (Extremely or always true)  

on how well they describe you during your work on programming projects  

for this course. 

 

The closer I am to a programming project deadline, the harder it is  

for me to concentrate on it 

1    2    3    4    5  

 

When I prepare for programming projects, I worry I will not  

understand the necessary material 

1    2    3    4    5  

 

While working on programming projects, I think that I am doing  

awful or that I may fail 

1    2    3    4    5  

 

I lose focus on programming projects, and I cannot understand  

material that I knew before the project 

1    2    3    4    5  

 

I finally understand solutions to programming projects after the  

deadline passes 

1    2    3    4    5  

 

I worry so much before a programming project deadline that I am  

too worn out to do my best on the project 

1    2    3    4    5  

 

I feel out of sorts or not really myself when I work on programming  

projects 

1    2    3    4    5  

 

I find that my mind sometimes wanders when I am working on  

important programming projects  
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1    2    3    4    5  

 

After the project deadline, I worry about whether I did well enough 

1    2    3    4    5  

 

I struggle with developing programming projects, or avoid them as  

long as I can. I feel that what I do will not be good enough. 

1    2    3    4    5    
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Appendix B: Adaptive Feedback Guide 
 

Badge Prompt Description 

 

Good Start! 

Good start on your solution 

and it is good that you have 

started testing early, so you 

have earned a hint! 

Continue to write tests 

while you program to earn 

more hints on future 

submissions. 

Received upon first submission 

that attains both correctness and 

coverage scores greater than zero 

(0). 

 

No progress on solution 

You can earn more hints by 

improving the behavior of 

your solution. 

Displayed when the correctness 

is less than 100% and has not 

increased since the highest 

correctness score from all 

previous submissions on the 

assignment. 

 

No progress on testing 

You can earn hints by 

testing your solution more 

thoroughly. Consider which 

cases you have not yet 

tested. 

Displayed when the coverage is 

less than 100% and has not 

increased since the highest 

coverage score from all previous 

submissions on the assignment. 

 

Good progress on 

solution! 

Good job improving the 

behavior of your solution! 

Displayed when the correctness 

score either has maintained 

100% or has increased from the 

previous highest correctness 

score. 

 

Good job adding more 

tests 

Good job writing more 

tests! 

Displayed when the coverage 

score either has maintained 

100% or has increased from the 

previous highest coverage score. 
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Badge Prompt Description 

 

Small progress 

You have made changes to 

your solution but have not 

improved the thoroughness 

of your software tests. To 

earn more hints you need to 

improve the coverage of 

your tests. 

Displayed when the number of 

test methods or lines has 

changed, but coverage has not 

increased. 

 

Keeping pace 

Keep improving your test 

coverage to earn additional 

hints. 

Displayed when the coverage 

score has increased from the 

highest coverage score so far, but 

has not met the goal (see below). 

 

You earned extra hints! 

Good job improving the 

coverage of your tests! You 

have earned additional 

hints to help you keep 

making progress! Continue 

to improve and test your 

solution to earn even more 

hints. 

Displayed when the coverage 

score has increased to or beyond 

the goal, with one additional hint 

for each multiple of 10% change 

in the remaining coverage. For 

example, an increase from 90% 

to 92% coverage increased 20% 

of the remaining coverage (2 of 

remaining 10%) and earns 2 

hints. 

 

Goal: Improve to __% 

code coverage from your 

tests 
Current code coverage 

from your tests: __% 

Shown in shown goals treatment, 

where the goal is initially 85%. 

After 85% coverage is first 

reached, the goal increases to 

covering 10% more of the 

remaining coverage. For 

example, after achieving 90% 

coverage, the subsequent goal 

will be 91% (1 of remaining 

10%). If a previous submission 

has reached 100% coverage, the 

goal will continue to be 100% for 

the rest of the assignment 

submissions. 

 


